Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Rev Lett ; 132(26): 266801, 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38996289

ABSTRACT

Nuclear spin polarization plays a crucial role in quantum information processing and quantum sensing. In this work, we demonstrate a robust and efficient method for nuclear spin polarization with boron vacancy (V_{B}^{-}) defects in hexagonal boron nitride (h-BN) using ground-state level anticrossing (GSLAC). We show that GSLAC-assisted nuclear polarization can be achieved with significantly lower laser power than excited-state level anticrossing, making the process experimentally more viable. Furthermore, we have demonstrated direct optical readout of nuclear spins for V_{B}^{-} in h-BN. Our findings suggest that GSLAC is a promising technique for the precise control and manipulation of nuclear spins in V_{B}^{-} defects in h-BN.

2.
Sci Adv ; 9(20): eadg2080, 2023 May 19.
Article in English | MEDLINE | ID: mdl-37196081

ABSTRACT

Silicon carbide is an emerging platform for quantum technologies that provides wafer scale and low-cost industrial fabrication. The material also hosts high-quality defects with long coherence times that can be used for quantum computation and sensing applications. Using an ensemble of nitrogen-vacancy centers and an XY8-2 correlation spectroscopy approach, we demonstrate a room-temperature quantum sensing of an artificial AC field centered at ~900 kHz with a spectral resolution of 10 kHz. Implementing the synchronized readout technique, we further extend the frequency resolution of our sensor to 0.01 kHz. These results pave the first steps for silicon carbide quantum sensors toward low-cost nuclear magnetic resonance spectrometers with a wide range of practical applications in medical, chemical, and biological analysis.

3.
Phys Rev Lett ; 127(2): 023602, 2021 Jul 09.
Article in English | MEDLINE | ID: mdl-34296909

ABSTRACT

High-speed long-range quantum communication requires combining frequency multiplexed photonic channels with quantum memories. We experimentally demonstrate an integrated quantum frequency conversion protocol that can convert between wavelength division multiplexing channels in the telecom range with an efficiency of 55±8% and a noise subtracted Hong-Ou-Mandel (HOM) dip visibility of 84.5%. This protocol is based on a cascaded second order nonlinear interaction and can be used to interface a broad spectrum of frequencies with narrowband quantum memories, or alternatively as a quantum optical transponder, efficiently interfacing different regions of a frequency-multiplexed spectrum.

4.
Opt Express ; 27(11): 15735-15749, 2019 May 27.
Article in English | MEDLINE | ID: mdl-31163765

ABSTRACT

We present interlayer slope waveguides, designed to guide light from one level to another in a multi-layer silicon photonics platform. The waveguide is fabricated from hydrogenated amorphous silicon (a-Si:H) film, deposited using hot-wire chemical vapor deposition (HWCVD) at a temperature of 230°C. The interlayer slope waveguide is comprises of a lower level input waveguide and an upper level output waveguide, connected by a waveguide on a slope, with vertical separation to isolate other crossing waveguides. Measured loss of 0.17 dB/slope was obtained for waveguide dimensions of 600 nm waveguide width (w) and 400 nm core thickness (h) at a wavelength of 1550 nm and for transverse electric (TE) mode polarization.

5.
Opt Lett ; 43(6): 1230, 2018 Mar 15.
Article in English | MEDLINE | ID: mdl-29543258

ABSTRACT

This publisher's note corrects an error in the abstract in Opt. Lett.43, 855 (2018)OPLEDP0146-959210.1364/OL.43.000855.

6.
Opt Lett ; 43(4): 855-858, 2018 Feb 15.
Article in English | MEDLINE | ID: mdl-29444011

ABSTRACT

We demonstrate on-chip generation of correlated pairs of photons in the near-visible spectrum using a CMOS compatible plasma-enhanced chemical vapor deposition silicon nitride photonic device. Photons are generated via spontaneous four wave mixing enhanced by a ring resonator with high intrinsic quality Q-factor of 3,20,000, resulting in a generation rate of 950,000 pairsmW. The high brightness of this source offers the opportunity to expand photonic quantum technologies over a broad wavelength range and provides a path to develop fully integrated quantum chips working at room temperature.

SELECTION OF CITATIONS
SEARCH DETAIL
...