Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Appl Mater Interfaces ; 9(1): 1136-1144, 2017 Jan 11.
Article in English | MEDLINE | ID: mdl-27966345

ABSTRACT

In this study, we describe a facile solution-processing method to effectively dope versatile n-type organic semiconductors, including fullerene, n-type small molecules, and graphene by commercially available ammonium and phosphonium salts via in situ anion-induced electron transfer. In addition to the Lewis basicity of anions, we unveiled that the ionic binding strength between the cation and anion of the salts is also crucial in modulating the electron transfer strength of the dopants to affect the resulting doping efficiency. Furthermore, combined with the rational design of n-type molecules, an n-doped organic semiconductor is demonstrated to be thermally and environmentally stable. This finding provides a simple and generally applicable method to make highly efficient n-doped conductors which complements the well-established p-doped organics such as PEDOT:PSS for organic electronic applications.

2.
J Mater Chem C Mater ; 1(1): 101-113, 2013 Jan 04.
Article in English | MEDLINE | ID: mdl-24086795

ABSTRACT

A systematic study of six phosphonic acid (PA) self-assembled monolayers (SAMs) with tailored molecular structures is performed to evaluate their effectiveness as dielectric modifying layers in organic field-effect transistors (OFETs) and determine the relationship between SAM structural order, surface homogeneity, and surface energy in dictating device performance. SAM structures and surface properties are examined by near edge X-ray absorption fine structure (NEXAFS) spectroscopy, contact angle goniometry, and atomic force microscopy (AFM). Top-contact pentacene OFET devices are fabricated on SAM modified Si with a thermally grown oxide layer as a dielectric. For less ordered methyl- and phenyl-terminated alkyl ~(CH2)12 PA SAMs of varying surface energies, pentacene OFETs show high charge carrier mobilities up to 4.1 cm2 V-1 s-1. It is hypothesized that for these SAMs, mitigation of molecular scale roughness and subsequent control of surface homogeneity allow for large pentacene grain growth leading to high performance pentacene OFET devices. PA SAMs that contain bulky terminal groups or are highly crystalline in nature do not allow for a homogenous surface at a molecular level and result in charge carrier mobilities of 1.3 cm2 V-1 s-1 or less. For all molecules used in this study, no causal relationship between SAM surface energy and charge carrier mobility in pentacene FET devices is observed.

3.
Phys Chem Chem Phys ; 14(41): 14110-26, 2012 Nov 07.
Article in English | MEDLINE | ID: mdl-22767209

ABSTRACT

Insulating and semiconducting molecular phosphonic acid (PA) self-assembled monolayers (SAMs) have been developed for applications in organic field-effect transistors (OFETs) for low-power, low-cost flexible electronics. Multifunctional SAMs on ultrathin metal oxides, such as hafnium oxide and aluminum oxide, are shown to enable (1) low-voltage (sub 2 V) OFETs through dielectric and interface engineering on rigid and plastic substrates, (2) simultaneous one-component modification of source-drain and dielectric surfaces in bottom-contact OFETs, and (3) SAM-FETs based on molecular monolayer semiconductors. The combination of excellent dielectric and interfacial properties results in high-performance OFETs with low-subthreshold slopes down to 75 mV dec(-1), high I(on)/I(off) ratios of 10(5)-10(7), contact resistance down to 700 Ω cm, charge carrier mobilities of 0.1-4.6 cm(2) V(-1) s(-1), and general applicability to solution-processed and vacuum-deposited n-type and p-type organic and polymer semiconductors.

4.
Appl Surf Sci ; 2612012 Nov 15.
Article in English | MEDLINE | ID: mdl-24288423

ABSTRACT

Ultra-thin self-assembled monolayer (SAM)-oxide hybrid dielectrics have gained significant interest for their application in low-voltage organic thin film transistors (OTFTs). A [8-(11-phenoxy-undecyloxy)-octyl]phosphonic acid (PhO-19-PA) SAM on ultrathin AlOx (2.5 nm) has been developed to significantly enhance the dielectric performance of inorganic oxides through reduction of leakage current while maintaining similar capacitance to the underlying oxide structure. Rapid processing of this SAM in ambient conditions is achieved by spin coating, however, as-cast monolayer density is not sufficient for dielectric applications. Thermal annealing of a bulk spun-cast PhO-19-PA molecular film is explored as a mechanism for SAM densification. SAM density, or surface coverage, and order are examined as a function of annealing temperature. These SAM characteristics are probed through atomic force microscopy (AFM), X-ray photoelectron spectroscopy (XPS), and near edge X-ray absorption fine structure spectroscopy (NEXAFS). It is found that at temperatures sufficient to melt the as-cast bulk molecular film, SAM densification is achieved; leading to a rapid processing technique for high performance SAM-oxide hybrid dielectric systems utilizing a single wet processing step. To demonstrate low-voltage devices based on this hybrid dielectric (with leakage current density of 7.7×10-8 A cm-2 and capacitance density of 0.62 µF cm-2 at 3 V), pentacene thin-film transistors (OTFTs) are fabricated and yield sub 2 V operation and charge carrier mobilites of up to 1.1 cm2 V-1 s-1.

SELECTION OF CITATIONS
SEARCH DETAIL
...