Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Arch Pharm (Weinheim) ; : e2400296, 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38923553

ABSTRACT

Nontuberculous mycobacteria (NTM), which include the Mycobacterium avium complex, are classified as difficult-to-treat pathogens due to their ability to quickly develop drug resistance against the most common antibiotics used to treat NTM infections. The overexpression of efflux pumps (EPs) was demonstrated to be a key mechanism of clarithromycin (CLA) resistance in NTM. Therefore, in this work, 24 compounds from an in-house library, characterized by chemical diversity, were tested as potential NTM EP inhibitors (EPIs) against Mycobacterium smegmatis mc2 155 and M. avium clinical isolates. Based on the acquired results, 12 novel analogs of the best derivatives 1b and 7b were designed and synthesized to improve the NTM EP inhibition activity. Among the second set of compounds, 13b emerged as the most potent NTM EPI. At a concentration of 4 µg/mL, it reduced the CLA minimum inhibitory concentration by 16-fold against the clinical isolate M. avium 2373 overexpressing EPs as primary mechanism of CLA resistance.

2.
Antibiotics (Basel) ; 12(5)2023 Apr 24.
Article in English | MEDLINE | ID: mdl-37237709

ABSTRACT

One promising approach in treating antibiotic-resistant bacteria is to "break" resistances connected with antibacterial efflux by co-administering efflux pump inhibitors (EPIs) with antibiotics. Here, ten compounds, previously optimized to restore the susceptibility to ciprofloxacin (CIP) of norA-overexpressing Staphylococcus aureus, were evaluated for their ability to inhibit norA-mediated efflux in Staphylococcus pseudintermedius and synergize with CIP, ethidium bromide (EtBr), gentamycin (GEN), and chlorhexidine digluconate (CHX). We focused efforts on S. pseudintermedius as a pathogenic bacterium of concern within veterinary and human medicine. By combining data from checkerboard assays and EtBr efflux inhibition experiments, the hits 2-arylquinoline 1, dihydropyridine 6, and 2-phenyl-4-carboxy-quinoline 8 were considered the best EPIs for S. pseudintermedius. Overall, most of the compounds, except for 2-arylquinoline compound 2, were able to fully restore the susceptibility of S. pseudintermedius to CIP and synergize with GEN as well, while the synergistic effect with CHX was less significant and often did not show a dose-dependent effect. These are valuable data for medicinal chemistry optimization of EPIs for S. pseudintermedius and lay the foundation for further studies on successful EPIs to treat staphylococcal infections.

3.
Eur J Med Chem ; 241: 114656, 2022 Nov 05.
Article in English | MEDLINE | ID: mdl-35963131

ABSTRACT

Antimicrobial resistance (AMR) represents a global health issue threatening our social lifestyle and the world economy. Efflux pumps are widely involved in AMR by playing a primary role in the development of specific mechanisms of resistance. In addition, they seem to be involved in the process of biofilm formation and maintenance, contributing to enhance the risk of creating superbugs difficult to treat. Accordingly, the identification of non-antibiotic molecules able to block efflux pumps, namely efflux pump inhibitors (EPIs), could be a promising strategy to counteract AMR and restore the antimicrobial activity of ineffective antibiotics. Herein, we enlarge the knowledge about the structure-activity relationship of 2-phenylquinoline Staphylococcus aureus NorA EPIs by reporting a new series of very potent C-6 functionalized derivatives. Best compounds significantly inhibited ethidium bromide efflux in a NorA-overexpressing S. aureus strain (SA-1199B) and strongly synergized at very low concentrations (0.20-0.78 µg/mL) with ciprofloxacin (CPX) against CPX-resistant S. aureus strains (SA-1199B and SA-K2378), as proved by checkerboard and time-kill experiments. In addition, some of these EPIs (9b and 10a) produced a post-antibiotic effect of 1.2 h and strongly enhanced antibiofilm activity of CPX against SA-1199B strain. Interestingly, at the concentrations used to reach synergy with CPX against resistant S. aureus strains, most of the EPI compounds did not show any human cell toxicity. Finally, by exploiting the recent released crystal structure of NorA, we observed that best EPI 9b highlighted a favourable docking pose, establishing some interesting interactions with key residues.


Subject(s)
Methicillin-Resistant Staphylococcus aureus , Staphylococcal Infections , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Bacterial Proteins , Biofilms , Ciprofloxacin/pharmacology , Humans , Methicillin-Resistant Staphylococcus aureus/metabolism , Microbial Sensitivity Tests , Multidrug Resistance-Associated Proteins , Plankton/metabolism , Staphylococcus aureus
4.
ACS Med Chem Lett ; 13(5): 855-864, 2022 May 12.
Article in English | MEDLINE | ID: mdl-35571875

ABSTRACT

A selection of compounds from a proprietary library, based on chemical diversity and various biological activities, was evaluated as potential inhibitors of the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) in a phenotypic-based screening assay. A compound based on a 2-phenylquinoline scaffold emerged as the most promising hit, with EC50 and CC50 values of 6 and 18 µM, respectively. The subsequent selection of additional analogues, along with the synthesis of ad hoc derivatives, led to compounds that maintained low µM activity as inhibitors of SARS-CoV-2 replication and lacked cytotoxicity at 100 µM. In addition, the most promising congeners also show pronounced antiviral activity against the human coronaviruses HCoV-229E and HCoV-OC43, with EC50 values ranging from 0.2 to 9.4 µM. The presence of a 6,7-dimethoxytetrahydroisoquinoline group at the C-4 position of the 2-phenylquinoline core gave compound 6g that showed potent activity against SARS-CoV-2 helicase (nsp13), a highly conserved enzyme, highlighting a potentiality against emerging HCoVs outbreaks.

5.
Molecules ; 26(22)2021 Nov 19.
Article in English | MEDLINE | ID: mdl-34834098

ABSTRACT

Antimicrobial resistance (AMR) is a complex threat to human health and, to date, it represents a hot topic in drug discovery. The use of non-antibiotic molecules to block resistance mechanisms is a powerful alternative to the identification of new antibiotics. Bacterial efflux pumps exert the early step of AMR development, allowing the bacteria to grow in presence of sub-inhibitory drug concentration and develop more specific resistance mechanisms. Thus, efflux pump inhibitors (EPIs) offer a great opportunity to fight AMR, potentially restoring antibiotic activity. Based on our experience in designing and synthesizing novel EPIs, herein, we retrieved information around quinoline and indole derivatives reported in literature on this topic. Thus, our aim was to collect all data around these promising classes of EPIs in order to delineate a comprehensive structure-activity relationship (SAR) around each core for different microbes. With this review article, we aim to help future research in the field in the discovery of new microbial EPIs with improved activity and a better safety profile.


Subject(s)
Anti-Bacterial Agents , Bacteria , Bacterial Infections/drug therapy , Bacterial Proteins , Carrier Proteins , Quinolines , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/therapeutic use , Bacteria/chemistry , Bacteria/metabolism , Bacterial Infections/metabolism , Bacterial Proteins/antagonists & inhibitors , Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , Carrier Proteins/antagonists & inhibitors , Carrier Proteins/chemistry , Carrier Proteins/metabolism , Humans , Quinolines/chemistry , Quinolines/therapeutic use , Structure-Activity Relationship
6.
ChemMedChem ; 16(19): 3044-3059, 2021 10 06.
Article in English | MEDLINE | ID: mdl-34032014

ABSTRACT

Antibiotic resistance breakers, such as efflux pump inhibitors (EPIs), represent a powerful alternative to the development of new antimicrobials. Recently, by using previously described EPIs, we developed pharmacophore models able to identify inhibitors of NorA, the most studied efflux pump of Staphylococcus aureus. Herein we report the pharmacophore-based virtual screening of a library of new potential NorA EPIs generated by an in-silico scaffold hopping approach of the quinoline core. After chemical synthesis and biological evaluation of the best virtual hits, we found the quinazoline core as the best performing scaffold. Accordingly, we designed and synthesized a series of functionalized 2-arylquinazolines, which were further evaluated as NorA EPIs. Four of them exhibited a strong synergism with ciprofloxacin and a good inhibition of ethidium bromide efflux on resistant S. aureus strains coupled with low cytotoxicity against human cell lines, thus highlighting a promising safety profile.


Subject(s)
Anti-Bacterial Agents/pharmacology , Bacterial Proteins/antagonists & inhibitors , Methicillin-Resistant Staphylococcus aureus/drug effects , Multidrug Resistance-Associated Proteins/antagonists & inhibitors , Quinazolines/pharmacology , Quinolines/pharmacology , Anti-Bacterial Agents/chemical synthesis , Anti-Bacterial Agents/chemistry , Bacterial Proteins/metabolism , Cell Line , Cell Survival/drug effects , Dose-Response Relationship, Drug , Humans , Methicillin-Resistant Staphylococcus aureus/metabolism , Microbial Sensitivity Tests , Molecular Structure , Multidrug Resistance-Associated Proteins/metabolism , Quinazolines/chemical synthesis , Quinazolines/chemistry , Quinolines/chemical synthesis , Quinolines/chemistry , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL
...