Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Alzheimers Dis ; 96(3): 861-875, 2023.
Article in English | MEDLINE | ID: mdl-37980658

ABSTRACT

Finding a cure for Alzheimer's disease (AD) has been notoriously challenging for many decades. Therefore, the current focus is mainly on prevention, timely intervention, and slowing the progression in the earliest stages. A better understanding of underlying mechanisms at the beginning of the disease could aid in early diagnosis and intervention, including alleviating symptoms or slowing down the disease progression. Changes in social cognition and progressive parvalbumin (PV) interneuron dysfunction are among the earliest observable effects of AD. Various AD rodent models mimic these early alterations, but only a narrow field of study has considered their mutual relationship. In this review, we discuss current knowledge about PV interneuron dysfunction in AD and emphasize their importance in social cognition and memory. Next, we propose oxytocin (OT) as a potent modulator of PV interneurons and as a promising treatment for managing some of the early symptoms. We further discuss the supporting evidence on its beneficial effects on AD-related pathology. Clinical trials have employed the use of OT in various neuropsychiatric diseases with promising results, but little is known about its prospective impacts on AD. On the other hand, the modulatory effects of OT in specific structures and local circuits need to be clarified in future studies. This review highlights the connection between PV interneurons and social cognition impairment in the early stages of AD and considers OT as a promising therapeutic agent for addressing these early deficits.


Subject(s)
Alzheimer Disease , Animals , Alzheimer Disease/pathology , Cognition , Disease Models, Animal , Hippocampus/pathology , Interneurons , Mice, Transgenic , Oxytocin , Parvalbumins/metabolism , Prospective Studies , Social Cognition , Humans
2.
Neurobiol Learn Mem ; 183: 107477, 2021 09.
Article in English | MEDLINE | ID: mdl-34116140

ABSTRACT

Neural components enabling flexible cognition and behavior are well-established, and depend mostly on proper intercommunication within the prefrontal cortex (PFC) and striatum. However, dense projections from the ventral hippocampus (vHPC) alter the functioning of the medial PFC (mPFC). Dysfunctional hippocampo-prefrontal connectivity negatively affects the integrity of flexible cognition, especially in patients with schizophrenia. In this study, we aimed to test the role of the vHPC and mPFC in a place avoidance task on a rotating arena using two spatial flexibility task variants - reversal learning and set-shifting. To achieve this, we inactivated each of these structures in adult male Long-Evans rats by performing bilateral local muscimol (a GABAA receptor agonist) injections. A significantly disrupted performance was observed in reversal learning in the vHPC-inactivated, but not in the mPFC-inactivated rats. These results confirm the notion that the vHPC participates in some forms of behavioral flexibility, especially when spatial cues are needed. It seems, rather unexpectedly, that the mPFC is not taxed in these flexibility tasks on a rotating arena.


Subject(s)
Attention/physiology , Hippocampus/physiology , Prefrontal Cortex/physiology , Reversal Learning/physiology , Spatial Processing/physiology , Animals , Attention/drug effects , Avoidance Learning/drug effects , Avoidance Learning/physiology , GABA-A Receptor Agonists/pharmacology , Hippocampus/drug effects , Male , Muscimol/pharmacology , Prefrontal Cortex/drug effects , Rats , Reversal Learning/drug effects , Spatial Processing/drug effects
3.
Front Neural Circuits ; 15: 634533, 2021.
Article in English | MEDLINE | ID: mdl-33994956

ABSTRACT

It is well known that communication between the medial prefrontal cortex (mPFC) and the ventral hippocampus (vHPC) is critical for various cognitive and behavioral functions. However, the exact role of these structures in spatial coordination remains to be clarified. Here we sought to determine the involvement of the mPFC and the vHPC in the spatial retrieval of a previously learned active place avoidance task in adult male Long-Evans rats, using a combination of unilateral and bilateral local muscimol inactivations. Moreover, we tested the role of the vHPC-mPFC pathway by performing combined ipsilateral and contralateral inactivations. Our results showed not only bilateral inactivations of either structure, but also the combined inactivations impaired the retrieval of spatial memory, whereas unilateral one-structure inactivations did not yield any effect. Remarkably, muscimol injections in combined groups exerted similar deficits, regardless of whether the inactivations were contralateral or ipsilateral. These findings confirm the importance of these structures in spatial cognition and emphasize the importance of the intact functioning of the vHPC-mPFC pathway.


Subject(s)
Hippocampus , Spatial Memory , Animals , Male , Muscimol/pharmacology , Prefrontal Cortex , Rats , Rats, Long-Evans
SELECTION OF CITATIONS
SEARCH DETAIL
...