Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-38857520

ABSTRACT

PURPOSE: To monitor changes in mood, cognitive function, brain electrical activity, and circulating kynurenine pathway metabolites in response to a three-week severe physical activity restriction, followed by three weeks of resumed activity adding resistance and high-intensity interval exercise training. METHODS: Twenty healthy participants (14 males, six females; 25.4 ± 5.2 years) underwent three weeks of limited physical activity using forearm crutches with one leg suspended (INACT) and then three weeks of resumed activity plus supervised resistance and high-intensity interval training sessions (ACT, three to six sessions per week). At baseline, after INACT, and then after ACT, venous blood was sampled for analysis of major kynurenine pathway metabolites, a short version of the International Physical Activity Questionnaire (IPAQ-SF), Hospital Anxiety and Depression Scale (HADS) and Profile of Mood States (POMS) questionnaires were completed, and cognitive tests with EEG were performed. RESULTS: During INACT, the depression score on the HADS scale tended to increase (3.5 to 6.8; p = 0.065), while it was reduced with ACT compared with after INACT (2.8; p = 0.022). On the POMS scale, depression, fatigue, and confusion increased within INACT (p < 0.05). Notably, subjects exhibited considerable variability, and those experiencing depression symptoms recorded by the HADS scale (n = 4) displayed distinct mood disturbances on POMS. All HADS and POMS scores were fully restored to baseline with ACT. Neither INACT nor ACT induced significant changes in cognition, brain electrical activity, or kynurenine pathway metabolites (p > 0.05). CONCLUSIONS: While young healthy individuals with three weeks of severely restricted physical activity do not undergo changes in circulating kynurenine pathway metabolites, cognitive performance, and brain electrical activity, their mood response is quite variable, and depression develops in some. Three weeks of resuming mobility plus exercise training reversed the mood profile.

2.
J Sleep Res ; 30(2): e13055, 2021 04.
Article in English | MEDLINE | ID: mdl-32363754

ABSTRACT

Total sleep deprivation (TSD) is associated with endothelial dysfunction and a consequent decrease in vascular reactivity and increase in peripheral vascular resistance. These effectors compromise the body's ability to thermoregulate in hot and cold stress conditions. We investigated heat-unacclimated young adult men (26 ± 2 years) to determine whether 36 hr of TSD compared to an 8 or 4-hr sleep condition, would suppress the responses of the autonomic system (body rectal temperature [Tre ], heart rate [HR], root mean square of successive interbeat intervals, physiological strain, blood pressure [BP], circulating blood catecholamines, sweating rate and subjective sensations) to whole-body uncompensable passive heat stress in traditional Finnish sauna heat (Tair  = 80-90°C, rh = 30%). Sauna bathing that induced whole-body hyperthermia had a residual effect on reducing BP in the 8-hr and 4-hr sleep per night conditions according to BP measurements. By contrast, 36 hr of total wakefulness led to an increase in BP. These observed sleep deprivation-dependent differences in BP modifications were not accompanied by changes in the blood plasma epinephrine and norepinephrine concentrations. However, during sauna bathing, an increase in BP following 36 hr of TSD was accompanied by significant decreases in body Tre , HR and physiological strain, together with a diminished sweating rate, enhanced vagus-mediated autonomic control of HR variability, and improved thermal perception by the subjects. Our results suggest the impaired ability of the body to accumulate external heat in the body's core under uncompensable passive heat conditions following 36 hr of TSD, because of the TSD-attenuated autonomic system response to acute heat stress.


Subject(s)
Adaptation, Physiological/physiology , Adaptation, Psychological/physiology , Body Temperature Regulation/physiology , Heart Rate/physiology , Heat-Shock Response/physiology , Sleep Deprivation/physiopathology , Adult , Humans , Male
3.
Hum Mov Sci ; 63: 10-19, 2019 Feb.
Article in English | MEDLINE | ID: mdl-30481721

ABSTRACT

Acute whole-body hyperthermia (WBH) increases blood markers concentration of stress, impairs motor drive to exercising muscles, and decreases resistance to neuromuscular fatigability. The functional natural residual consequences of WBH on neuromuscular functions remain unclear. We aimed to investigate the effects of residual WBH on voluntary and electrically induced ankle plantar flexor contractility properties, motor drive transmission (reflexes), muscle torque steadiness, resistance to neuromuscular fatigability, and markers of stress as the body temperature recovers naturally to normothermia. WBH was induced by Finnish sauna bathing in 16 apparently healthy young (24 ±â€¯4 years) adult men. Motor performance was monitored before and 2 h after the sauna, and immediately after submaximal exercise (120 s at 50% of maximal voluntary contraction). Markers of stress were monitored before and 2 h after the sauna. Finnish sauna exposure induced moderate to severe WBH (rectal temperature, 38.5-39.6 °C). At 2 h after the sauna, rectal temperature had recovered to the preheating level (preheating 37.11 ±â€¯0.33 °C versus postheating 37.00 ±â€¯0.29 °C, p > .05). Post-sauna recovery was accompanied by slowed salivary free cortisol diurnal kinetics, whereas noradrenaline, dopamine, and serotonin did not persist into the 2 h recovery after the sauna. Although recovery to normothermia after a sauna led to a greater acceleration of muscle contractility properties and decreased muscle steadiness, sustained isometric submaximal contraction did not provoke greater neuromuscular fatigability.


Subject(s)
Muscle Contraction/physiology , Muscle Fatigue/physiology , Steam Bath , Adult , Ankle Joint/physiology , Electromyography/methods , Exercise/physiology , Humans , Isometric Contraction/physiology , Male , Muscle, Skeletal/physiology , Torque , Young Adult
4.
Int J Hyperthermia ; 35(1): 375-382, 2018.
Article in English | MEDLINE | ID: mdl-30300030

ABSTRACT

OBJECTIVE: The aim of this study was to investigate the post-sauna residual consequences on brain neural network arousal, information processing and cognitive performance. METHODS: Sixteen male subjects (24 ± 1 yr.) participated in the study. Whole-body hyperthermia was induced with Finnish sauna bathing. Before and 90 min after the sauna, resting electroencephalography (EEG) for spectral analysis and EEG event-related potentials (ERPs) during oddball tasks by two modalities (auditory and visual) were recorded. RESULTS: Sauna bathing increased rectal temperature (Tre, 37.11 ± 0.33 °C to 38.84 ± 0.32 °C) and heart rate (HR, 65.63 ± 9.39 bpm to 151.0 ± 21.8 bpm). At 90 min after the sauna, Tre (37.00 ± 0.29 °C) and HR (72.1 ± 2.80 bpm) recovered to baseline levels. An increase was found in alpha power following sauna recovery. In the visual task modality, post-sauna recovery led to enhancement in the N2 amplitude with centroparietal distribution and decreases in P3 amplitude with distribution along the frontoparietal axis for executive motor-cognitive processing. In the auditory task modality, post-sauna recovery led to a decrease in P3 amplitude with a frontoparietal distribution and this change was accompanied by auditory N2 amplitude enhancement along the centroparietal distribution for non-target cognitive processing. No significant differences in task performance were found. CONCLUSION: Post-sauna recovery to normothermia led to enhanced resting neural network relaxation followed by increases in cognitive processing economy for the given oddball tasks. The auditory processing was not affected more by post-sauna recovery than was visual processing. Post-sauna recovery modifications in ERP components (stimulus processing) were insufficient to affect cognitive performance in both visual and auditory task modalities.


Subject(s)
Brain/blood supply , Cognition/physiology , Electroencephalography/methods , Nerve Net/physiopathology , Steam Bath/methods , Adult , Humans , Male , Young Adult
5.
Exp Brain Res ; 236(7): 2085-2096, 2018 Jul.
Article in English | MEDLINE | ID: mdl-29754195

ABSTRACT

Healthy aging is associated with a marked decline in motor performance. The functional consequences of applying varying novel or unexpected motor stimuli during intermittent isometric prolonged (fatiguing) motor tasks for lower limb neuromuscular fatigability and steadiness, perception of effort, and blood markers of stress in healthy aged men compared with young men have not been investigated. The participants in this study were 15 young men (aged 22 ± 4 years) and 10 older men (aged 67 ± 6 years). They performed 100 intermittent isometric knee extensions under three experimental conditions involving intermittent isometric contraction tasks according to constant, predictable, and unpredictable torque target sequences. The variability in maximal voluntary contraction averaged 50%, and was 25, 50, and 75% for the three strategies. All included a 5-s contraction and 20-s rest. The main variables were measured before exercise, after 100 repetitions, and 1 h after exercise. In all experimental trials, the decreases in the maximal voluntary contraction and central activation ratio, and the increases in effort sensation and muscle temperature, were smaller in older men than in younger men. The coefficient of variation during the motor performance did not differ between age groups. However, in all three strategies, the dopamine concentration was significantly higher in older than in younger men. The prolactin concentration did not differ significantly between age groups or conditions, although its decrease during loading correlated negatively with the central activation ratio.


Subject(s)
Adaptation, Physiological/physiology , Aging/physiology , Muscle Contraction/physiology , Muscle Fatigue/physiology , Muscle, Skeletal/physiology , Neuromuscular Junction/physiology , Adult , Aged , Analysis of Variance , Dopamine/blood , Electric Stimulation , Electromyography , Feedback, Sensory , Humans , Male , Middle Aged , Prolactin/blood , Torque , Young Adult
6.
Front Psychol ; 8: 1344, 2017.
Article in English | MEDLINE | ID: mdl-28824518

ABSTRACT

We evaluated gender-specific effects of two types of undergarments on exercise-induced physiological and psychological stress and subsequent recovery in cold conditions for male and female participants. Ten healthy men and eleven healthy women (25.0 ± 1.5 versus 23.4 ± 1.2 years old, respectively) completed the experimental session twice with two different types of undergarments: polyester or merino wool leggings and long-sleeve tops; specifically, merino fabric had greater thermal resistance and water absorbency, and less water vapor as well as air permeability than polyester. Experimental sessions involved performing 1 h of exercise on a cycle ergometer at 8°C ambient temperature and 55% relative humidity, holding at 70-80 revolutions per minute and 60% of each participant's predetermined maximal power output (assessed by maximal oxygen uptake test), followed by 1 h recovery in the same environment. Every 5 min during exercise and every 10 min during recovery, rectal temperature, heart rate, subjective ratings for thermal, shivering/sweating and clothing wetness sensations, and clothing next-to-skin and outer side surface temperature and humidity on the chest, back and thigh were recorded. All participants experienced high physiological stress (assessed by physiological strain index) during exercise. No significant gender differences were found in core temperature or heart rate changes during exercise, but women cooled down faster during recovery. Next-to-skin humidity was similar between genders and different garment sets during exercise and recovery, but such temperatures at the chest during exercise and at the thigh during exercise and recovery were lower in women with both sets of garments. Subjective thermal sensations were similar in all cases. In the last 20 min of cycling, women started to feel wetter than men (P < 0.05) for both garment sets. Shivering was reported as stronger in women in the last 10 min of recovery. Most of the changes in the garment microclimates during exercise and recovery in the cold were associated with gender-related differences rather than with fabric-related differences.

7.
Exp Brain Res ; 235(5): 1323-1336, 2017 05.
Article in English | MEDLINE | ID: mdl-28204862

ABSTRACT

An unfamiliar or novel physical stimulus induces activation of dopaminergic neurons within the brain and greater activity in areas involved in emotion; considering this, we aimed to establish whether unpredictable prolonged (fatiguing) motor task (vs. constant vs. predictable) evokes greater dopaminergic activity, enhances neuromuscular performance, motor accuracy, and perception of effort, and delays overall central fatigue. Fifteen healthy male volunteers (aged 22 ± 4 years) were required to perform 1 of 3 exercise trials (at least 1 week apart) of 100 intermittent isometric contraction (IIC) tasks involving knee extensions at 60° flexion. Trials were structured differently by simulated contraction intensity. A fatigue task involved 5-s contractions and 20-s rest. Variables measured before, during, and after IIC were electrically induced force, maximal voluntary contraction, central activation ratio, intramuscular temperature, and blood levels of dopamine, cortisol, and prolactin, and intraindividual motor variability and accuracy (constant and absolute error). We found that IIC increased central and peripheral fatigue, force sensation, and T mu, and decreased absolute and constant error without visual feedback, but did not affect motor variability. There were no significant differences between the three IIC tasks. However, only unpredictable tasks increased dopaminergic activity, which was insufficient to affect central motivation to perform isometric exercise and alter centrally mediated components of fatigue.


Subject(s)
Dopamine/blood , Fatigue/blood , Fatigue/physiopathology , Hydrocortisone/blood , Prolactin/blood , Psychomotor Performance/physiology , Adolescent , Adult , Analysis of Variance , Anthropometry , Electric Stimulation , Electromyography , Enzyme-Linked Immunosorbent Assay , Humans , Isometric Contraction/physiology , Male , Muscle, Skeletal/physiopathology , Physical Endurance/physiology , Young Adult
8.
Front Psychol ; 8: 2282, 2017.
Article in English | MEDLINE | ID: mdl-29312105

ABSTRACT

The main aim of our study was to determinate whether a repeated bout (RB) (vs. first bout [FB]) of sprint interval cycling exercise (SIE) is sufficient to mitigate SIE-induced psychological and physiological biomarker kinetics within 48 h after the exercise. Ten physically active men (age, 22.6 ± 5.2 years; VO2max, 44.3 ± 5.7 ml/kg/min) performed the FB of SIE (12 repeats of 5 s each) on one day and the RB 2 weeks later. The following parameters were measured: motor performance (voluntary, electrically induced and isokinetic skeletal muscle contraction torque, and central activation ratio [CAR]); stress markers [brain-derived neurotrophic factor (BDNF), cortisol, norepinephrine, and epinephrine]; inflammatory markers (IL-6, IL-10, and TNF-α); metabolic markers (glucose and lactate); muscle and rectal temperature; cycling power output; and psychological perceptions. The average cycling power output and neuromuscular fatigue after exercise did not differ between the FB and RB. There were significant decreases in cortisol and BDNF concentration at 12 h (P < 0.05) and 24 h (P < 0.001) after the FB, respectively. The decrease in cortisol concentration observed 12 h after exercise was significantly greater after the RB (P < 0.05) than after the FB. The immune-metabolic response to the RB (vs. FB) SIE was suppressed and accompanied by lower psychological exertion. Most of the changes in psychological and physiological biomarkers in the FB and RB were closely related to the response kinetics of changes in BDNF concentration.

SELECTION OF CITATIONS
SEARCH DETAIL
...