Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Biofabrication ; 16(3)2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38608454

ABSTRACT

High failure rates of the current drug development process are driving exemplary changes toward methodologies centered on human diseasein-vitromodeling. Organoids are self-organized tissue sub-units resembling their organ of origin and are widely acknowledged for their unique potential in recapitulating human physio-pathological mechanisms. They are transformative for human health by becoming the platform of choice to probe disease mechanisms and advance new therapies. Furthermore, the compounds' validation as therapeutics represents another point of the drug development pipeline where organoids may provide key understandings and help pharma organizations replace or reduce animal research. In this review, we focus on gastrointestinal organoid models, which are currently the most advanced organoid models in drug development. We focus on experimental validations of their value, and we propose avenues to enhance their use in drug discovery and development, as well as precision medicine and diagnostics.


Subject(s)
Drug Development , Organoids , Precision Medicine , Humans , Organoids/drug effects , Organoids/cytology , Organoids/metabolism , Animals , Drug Discovery , Models, Biological , Gastrointestinal Tract/drug effects , Gastrointestinal Tract/metabolism
3.
Fluids Barriers CNS ; 18(1): 43, 2021 Sep 20.
Article in English | MEDLINE | ID: mdl-34544422

ABSTRACT

BACKGROUND: The pathways that control protein transport across the blood-brain barrier (BBB) remain poorly characterized. Despite great advances in recapitulating the human BBB in vitro, current models are not suitable for systematic analysis of the molecular mechanisms of antibody transport. The gaps in our mechanistic understanding of antibody transcytosis hinder new therapeutic delivery strategy development. METHODS: We applied a novel bioengineering approach to generate human BBB organoids by the self-assembly of astrocytes, pericytes and brain endothelial cells with unprecedented throughput and reproducibility using micro patterned hydrogels. We designed a semi-automated and scalable imaging assay to measure receptor-mediated transcytosis of antibodies. Finally, we developed a workflow to use CRISPR/Cas9 gene editing in BBB organoid arrays to knock out regulators of endocytosis specifically in brain endothelial cells in order to dissect the molecular mechanisms of receptor-mediated transcytosis. RESULTS: BBB organoid arrays allowed the simultaneous growth of more than 3000 homogenous organoids per individual experiment in a highly reproducible manner. BBB organoid arrays showed low permeability to macromolecules and prevented transport of human non-targeting antibodies. In contrast, a monovalent antibody targeting the human transferrin receptor underwent dose- and time-dependent transcytosis in organoids. Using CRISPR/Cas9 gene editing in BBB organoid arrays, we showed that clathrin, but not caveolin, is required for transferrin receptor-dependent transcytosis. CONCLUSIONS: Human BBB organoid arrays are a robust high-throughput platform that can be used to discover new mechanisms of receptor-mediated antibody transcytosis. The implementation of this platform during early stages of drug discovery can accelerate the development of new brain delivery technologies.


Subject(s)
Antibodies/metabolism , Bioengineering/methods , Blood-Brain Barrier/metabolism , Organoids/metabolism , Receptors, Transferrin/metabolism , Transcytosis/physiology , Animals , Antibodies/analysis , Astrocytes/chemistry , Astrocytes/metabolism , Blood-Brain Barrier/chemistry , Blood-Brain Barrier/cytology , Cells, Cultured , Coculture Techniques , Endothelial Cells/chemistry , Endothelial Cells/metabolism , Humans , Organoids/chemistry , Organoids/cytology , Pericytes/chemistry , Pericytes/metabolism , Receptors, Transferrin/analysis
4.
Nat Biomed Eng ; 4(9): 863-874, 2020 09.
Article in English | MEDLINE | ID: mdl-32514094

ABSTRACT

Stem-cell-derived epithelial organoids are routinely used for the biological and biomedical modelling of tissues. However, the complexity, lack of standardization and quality control of stem cell culture in solid extracellular matrices hampers the routine use of the organoids at the industrial scale. Here, we report the fabrication of microengineered cell culture devices and scalable and automated methods for suspension culture and real-time analysis of thousands of individual gastrointestinal organoids trapped in microcavity arrays within a polymer-hydrogel substrate. The absence of a solid matrix substantially reduces organoid heterogeneity, which we show for mouse and human gastrointestinal organoids. We use the devices to screen for anticancer drug candidates with patient-derived colorectal cancer organoids, and apply high-content image-based phenotypic analyses to reveal insights into mechanisms of drug action. The scalable organoid-culture technology should facilitate the use of organoids in drug development and diagnostics.


Subject(s)
Cell Culture Techniques/methods , Organoids/cytology , Stem Cells/cytology , Animals , Cell Aggregation , Cells, Cultured , Dimethylpolysiloxanes/chemistry , Drug Evaluation, Preclinical , High-Throughput Screening Assays , Humans , Hydrogels/chemistry , Intestines/cytology , Mice , Organogenesis , Organoids/drug effects , Organoids/growth & development
6.
Elife ; 82019 02 26.
Article in English | MEDLINE | ID: mdl-30803481

ABSTRACT

Antimicrobial peptides (AMPs) are host-encoded antibiotics that combat invading microorganisms. These short, cationic peptides have been implicated in many biological processes, primarily involving innate immunity. In vitro studies have shown AMPs kill bacteria and fungi at physiological concentrations, but little validation has been done in vivo. We utilized CRISPR gene editing to delete all known immune-inducible AMPs of Drosophila, namely: 4 Attacins, 4 Cecropins, 2 Diptericins, Drosocin, Drosomycin, Metchnikowin and Defensin. Using individual and multiple knockouts, including flies lacking all 14 AMP genes, we characterize the in vivo function of individual and groups of AMPs against diverse bacterial and fungal pathogens. We found that Drosophila AMPs act primarily against Gram-negative bacteria and fungi, contributing either additively or synergistically. We also describe remarkable specificity wherein certain AMPs contribute the bulk of microbicidal activity against specific pathogens, providing functional demonstrations of highly specific AMP-pathogen interactions in an in vivo setting.


Subject(s)
Anti-Infective Agents/pharmacology , Antimicrobial Cationic Peptides/pharmacology , Drosophila/immunology , Immunity, Innate , Animals , Antimicrobial Cationic Peptides/genetics , Bacteria/immunology , Drosophila/genetics , Fungi/immunology , Gene Deletion , Gene Knockout Techniques
SELECTION OF CITATIONS
SEARCH DETAIL
...