Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 55
Filter
1.
Sci Total Environ ; 926: 171834, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38521258

ABSTRACT

The co-occurrence of microplastics (MPs) with potentially toxic metals in the environment stresses the need to address their physicochemical interactions and the potential ecological and human health implications. Here, we investigated the reaction of aqueous U with agricultural soil and high-density polyethylene (HDPE) through the integration of batch experiments, microscopy, and spectroscopy. The aqueous initial concentration of U (100 µM) decreased between 98.6 and 99.2 % at pH 5 and between 86.2 and 98.9 % at pH 7.5 following the first half hour of reaction with 10 g of soil. In similar experimental conditions but with added HDPE, aqueous U decreased between 98.6 and 99.7 % at pH 5 and between 76.1 and 95.2 % at pH 7.5, suggesting that HDPE modified the accumulation of U in soil as a function of pH. Uranium-bearing precipitates on the cracked surface of HDPE were identified by SEM/EDS after two weeks of agitation in water at both pH 5 and 7.5. Accumulation of U on the near-surface region of reacted HDPE was confirmed by XPS. Our findings suggest that the precipitation of U was facilitated by the weathering of the surface of HDPE. These results provide insights about surface-mediated reactions of aqueous metals with MPs, contributing relevant information about the mobility of metals and MPs at co-contaminated agricultural sites.

2.
Environ Sci Technol ; 57(49): 20881-20892, 2023 Dec 12.
Article in English | MEDLINE | ID: mdl-38019567

ABSTRACT

The co-occurrence of uranyl and arsenate in contaminated water caused by natural processes and mining is a concern for impacted communities, including in Native American lands in the U.S. Southwest. We investigated the simultaneous removal of aqueous uranyl and arsenate after the reaction with limestone and precipitated hydroxyapatite (HAp, Ca10(PO4)6(OH)2). In benchtop experiments with an initial pH of 3.0 and initial concentrations of 1 mM U and As, uranyl and arsenate coprecipitated in the presence of 1 g L-1 limestone. However, related experiments initiated under circumneutral pH conditions showed that uranyl and arsenate remained soluble. Upon addition of 1 mM PO43- and 3 mM Ca2+ in solution (initial concentration of 0.05 mM U and As) resulted in the rapid removal of over 97% of U via Ca-U-P precipitation. In experiments with 2 mM PO43- and 10 mM Ca2+ at pH rising from 7.0 to 11.0, aqueous concentrations of As decreased (between 30 and 98%) circa pH 9. HAp precipitation in solids was confirmed by powder X-ray diffraction and scanning electron microscopy/energy dispersive X-ray. Electron microprobe analysis indicated U was coprecipitated with Ca and P, while As was mainly immobilized through HAp adsorption. The results indicate that natural materials, such as HAp and limestone, can effectively remove uranyl and arsenate mixtures.


Subject(s)
Arsenates , Uranium , Calcium Carbonate , Hydrogen-Ion Concentration , Adsorption , Water
3.
Environ Eng Sci ; 40(11): 562-573, 2023 Nov 01.
Article in English | MEDLINE | ID: mdl-37981952

ABSTRACT

We studied the co-occurrence of microplastics (MPs) and metals in field sites and further investigated their interfacial interaction in controlled laboratory conditions. First, we detected MPs in freshwater co-occurring with metals in rural and urban areas in New Mexico. Automated particle counting and fluorescence microscopy indicated that particles in field samples ranged from 7 to 149 particles/L. The urban location contained the highest count of confirmed MPs, including polyester, cellophane, and rayon, as indicated by Attenuated Total Reflectance-Fourier Transform Infrared (ATR-FTIR) spectroscopy analyses. Metal analyses using inductively coupled plasma (ICP) revealed that bodies of water in a rural site affected by mining legacy contained up to 332.8 µg/L of U, while all bodies of water contained As concentrations below 11.4 µg/L. These field findings motivated experiments in laboratory conditions, reacting MPs with 0.02-0.2 mM of As or U solutions at acidic and neutral pH with poly(methyl-methacrylate), polyethylene, and polystyrene MPs. In these experiments, As did not interact with any of the MPs tested at pH 3 and pH 7, nor U with any MPs at pH 3. Experiments supplied with U and MPs at pH 7 indicated that MPs served as substrate surface for the adsorption and nucleation of U precipitates. Chemical speciation modeling and microscopy analyses (i.e., Transmission Electron Microscopy [TEM]) suggest that U precipitates resemble sodium-compreignacite and schoepite. These findings have relevant implications to further understanding the occurrence and interfacial interaction of MPs and metals in freshwater.

4.
Chem Geol ; 6362023 Oct 05.
Article in English | MEDLINE | ID: mdl-37601980

ABSTRACT

We integrated aqueous chemistry analyses with geochemical modeling to determine the kinetics of the dissolution of Na and K uranyl arsenate solids (UAs(s)) at acidic pH. Improving our understanding of how UAs(s) dissolve is essential to predict transport of U and As, such as in acid mine drainage. At pH 2, Na0.48H0.52(UO2)(AsO4)(H2O)2.5(s) (NaUAs(s)) and K0.9H0.1(UO2)(AsO4)(H2O)2.5(s) (KUAs(s)) both dissolve with a rate constant of 3.2 × 10-7 mol m-2 s-1, which is faster than analogous uranyl phosphate solids. At pH 3, NaUAs(s) (6.3 × 10-8 mol m-2 s-1) and KUAs(s) (2.0 × 10-8 mol m-2 s-1) have smaller rate constants. Steady-state aqueous concentrations of U and As are similarly reached within the first several hours of reaction progress. This study provides dissolution rate constants for UAs(s), which may be integrated into reactive transport models for risk assessment and remediation of U and As contaminated waters.

5.
Mycologia ; 115(2): 165-177, 2023.
Article in English | MEDLINE | ID: mdl-36857605

ABSTRACT

Characterizing the diverse, root-associated fungi in mine wastes can accelerate the development of bioremediation strategies to stabilize heavy metals. Ascomycota fungi are well known for their mutualistic associations with plant roots and, separately, for roles in the accumulation of toxic compounds from the environment, such as heavy metals. We sampled soils and cultured root-associated fungi from blue grama grass (Bouteloua gracilis) collected from lands with a history of uranium (U) mining and contrasted against communities in nearby, off-mine sites. Plant root-associated fungal communities from mine sites were lower in taxonomic richness and diversity than root fungi from paired, off-mine sites. We assessed potential functional consequences of unique mine-associated soil microbial communities using plant bioassays, which revealed that plants grown in mine soils in the greenhouse had significantly lower germination, survival, and less total biomass than plants grown in off-mine soils but did not alter allocation patterns to roots versus shoots. We identified candidate culturable root-associated Ascomycota taxa for bioremediation and increased understanding of the biological impacts of heavy metals on microbial communities and plant growth.


Subject(s)
Ascomycota , Uranium , Soil , New Mexico , Fungi , Plants/microbiology , Poaceae , Plant Roots/microbiology
6.
Toxicol Sci ; 193(1): 90-102, 2023 05 12.
Article in English | MEDLINE | ID: mdl-36881996

ABSTRACT

Microplastics represent an emerging environmental contaminant, with large gaps in our understanding of human health impacts. Furthermore, environmental factors may modify the plastic chemistry, further altering the toxic potency. Ultraviolet (UV) light is one such unavoidable factor for airborne microplastic particulates and a known modifier of polystyrene surface chemistry. As an experimental model, we aged commercially available polystyrene microspheres for 5 weeks with UV radiation, then compared the cellular responses in A549 lung cells with both pristine and irradiated particulates. Photoaging altered the surface morphology of irradiated microspheres and increased the intensities of polar groups on the near-surface region of the particles as indicated by scanning electron microscopy and by fitting of high-resolution X-ray photoelectron spectroscopy C 1s spectra, respectively. Even at low concentrations (1-30 µg/ml), photoaged microspheres at 1 and 5 µm in diameter exerted more pronounced biological responses in the A549 cells than was caused by pristine microspheres. High-content imaging analysis revealed S and G2 cell cycle accumulation and morphological changes, which were also more pronounced in A549 cells treated with photoaged microspheres, and further influenced by the size, dose, and time of exposures. Polystyrene microspheres reduced monolayer barrier integrity and slowed regrowth in a wound healing assay in a manner dependent on dose, photoaging, and size of the microsphere. UV-photoaging generally enhanced the toxicity of polystyrene microspheres in A549 cells. Understanding the influence of weathering and environmental aging, along with size, shape, and chemistry, on microplastics biocompatibility may be an essential consideration for incorporation of different plastics in products.


Subject(s)
Water Pollutants, Chemical , Humans , Lung , Microplastics/toxicity , Microspheres , Oxidative Stress , Plastics/analysis , Polystyrenes/toxicity , Polystyrenes/analysis , Polystyrenes/chemistry , Water Pollutants, Chemical/toxicity
7.
Environ Sci Technol ; 57(1): 255-265, 2023 01 10.
Article in English | MEDLINE | ID: mdl-36525634

ABSTRACT

We investigated the aqueous solubility and thermodynamic properties of two meta-autunite group uranyl arsenate solids (UAs). The measured solubility products (log Ksp) obtained in dissolution and precipitation experiments at equilibrium pH 2 and 3 for NaUAs and KUAs ranged from -23.50 to -22.96 and -23.87 to -23.38, respectively. The secondary phases (UO2)(H2AsO4)2(H2O)(s) and trögerite, (UO2)3(AsO4)2·12H2O(s), were identified by powder X-ray diffraction in the reacted solids of KUA precipitation experiments (pH 2) and NaUAs dissolution and precipitation experiments (pH 3), respectively. The identification of these secondary phases in reacted solids suggest that H3O+ co-occurring with Na or K in the interlayer region can influence the solubilities of uranyl arsenate solids. The standard-state enthalpy of formation from the elements (ΔHf-el) of NaUAs is -3025 ± 22 kJ mol-1 and for KUAs is -3000 ± 28 kJ mol-1 derived from measurements by drop solution calorimetry, consistent with values reported in other studies for uranyl phosphate solids. This work provides novel thermodynamic information for reactive transport models to interpret and predict the influence of uranyl arsenate solids on soluble concentrations of U and As in contaminated waters affected by mining legacy and other anthropogenic activities.


Subject(s)
Arsenates , Solubility , Thermodynamics
8.
ACS Earth Space Chem ; 6(7): 1644-1654, 2022 Jul 21.
Article in English | MEDLINE | ID: mdl-36238447

ABSTRACT

We integrated aqueous chemistry, spectroscopy, and microbiology techniques to identify chemical and microbial processes affecting the release of arsenic (As), iron (Fe), and manganese (Mn) from contaminated sediments exposed to aerobic and anaerobic conditions. The sediments were collected from Cheyenne River Sioux Tribal lands in South Dakota, which has dealt with mining legacy for several decades. The range of concentrations of total As measured from contaminated sediments was 96 to 259 mg kg-1, which co-occurs with Fe (21 000-22 005 mg kg-1) and Mn (682-703 mg kg-1). The transition from aerobic to anaerobic redox conditions yielded the highest microbial diversity, and the release of the highest concentrations of As, Fe, and Mn in batch experiments reacted with an exogenous electron donor (glucose). The reduction of As was confirmed by XANES analyses when transitioning from aerobic to anaerobic conditions. In contrast, the releases of As, Fe and Mn after a reaction with phosphate was at least 1 order of magnitude lower compared with experiments amended with glucose. Our results indicate that mine waste sediments amended with an exogenous electron donor trigger microbial reductive dissolution caused by anaerobic respiration. These dissolution processes can affect metal mobilization in systems transitioning from aerobic to anaerobic conditions in redox gradients. Our results are relevant for natural systems, for surface and groundwater exchange, or other systems in which metal cycling is influenced by chemical and biological processes.

9.
J Environ Chem Eng ; 10(5)2022 Oct.
Article in English | MEDLINE | ID: mdl-36060014

ABSTRACT

We previously observed that phosphonate functionalized electrospun nanofibers can uptake U(VI), making them promising materials for sensing and water treatment applications. Here, we investigate the optimal fabrication of these materials and their mechanism of U(VI) binding under the influence of environmentally relevant ions (e.g., Ca2+ and CO 3 2 - ). We found that U(VI) uptake was greatest on polyacrylonitrile (PAN) functionalized with longer-chain phosphonate surfactants (e.g., hexa- and octadecyl phosphonate; HDPA and ODPA, respectively), which were better retained in the nanofiber after surface segregation. Subsequent uptake experiments to better understand specific solid-liquid interfacial interactions were carried out using 5 mg of HDPA-functionalized PAN mats with 10 µM U at pH 6.8 in four systems with different combinations of solutions containing 5 mM calcium (Ca2+) and 5 mM bicarbonate ( HCO 3 - ). U uptake was similar in control solutions containing no Ca2+ and HCO 3 - (resulting in 19 ± 3% U uptake), and in those containing only 5 mM Ca2+ (resulting in 20 ± 3% U uptake). A decrease in U uptake (10 ± 4% U uptake) was observed in experiments with HCO 3 - , indicating that UO2-CO3 complexes may increase uranium solubility. Results from shell-by-shell EXAFS fitting, aqueous extractions, and surface-enhanced Raman scattering (SERS) indicate that U is bound to phosphonate as a monodentate inner sphere surface complex to one of the hydroxyls in the phosphonate functional groups. New knowledge derived from this study on material fabrication and solid-liquid interfacial interactions will help to advance technologies for use in the in-situ detection and treatment of U in water.

10.
Front Vet Sci ; 9: 830157, 2022.
Article in English | MEDLINE | ID: mdl-35433921

ABSTRACT

Sarcoptic mange is considered the main driver of demographic declines occurred in the last decades in Iberian ibex (Capra pyrenaica) populations. Mass treatment campaigns by administration of in-feed acaricides are used as a measure to mitigate the impact of mange in the affected populations. However, there are no data on ivermectin (IVM) pharmacokinetics in this wild caprine, and the treatment through medicated feed is not endorsed by evidence on its effectiveness. The aim of this study is to determine the pharmacokinetic profile of IVM in plasma samples of ibexes after the experimental oral administration of IVM, using high performance liquid chromatography (HPLC) with automated solid phase extraction and fluorescence detection. A dose of 500 µg of IVM per body weight was orally administered in a feed bolus to nine healthy adult ibexes (seven males and two females). Blood samples were collected by jugular venipuncture into heparin-coated tubes at day 1, 2, 3, 4, 7, 10, 15, and 45 post-administration (dpa). The highest plasma concentration of IVM (Cmax = 3.4 ng/ml) was detected 24 h after the oral administration (T1), followed by a rapid decrease during the first week post-administration. Our results reveal that plasma IVM concentration drops drastically within 5 days of ingestion, questioning the effectiveness of a single in-feed dose of this drug to control sarcoptic mange. To the best of our knowledge, this is the first study on plasma availability of oral IVM in ibexes and in any wild ungulate species.

11.
Environ Sci Technol ; 55(23): 16246-16256, 2021 12 07.
Article in English | MEDLINE | ID: mdl-34797046

ABSTRACT

We investigated interfacial reactions of U(VI) in the presence of Suwannee River natural organic matter (NOM) at acidic and neutral pH. Laboratory batch experiments show that the adsorption and precipitation of U(VI) in the presence of NOM occur at pH 2 and pH 4, while the aqueous complexation of U by dissolved organic matter is favored at pH 7, preventing its precipitation. Spectroscopic analyses indicate that U(VI) is mainly adsorbed to the particulate organic matter at pH 4. However, U(VI)-bearing ultrafine to nanocrystalline solids were identified at pH 4 by electron microscopy. This study shows the promotion of U(VI) precipitation by NOM at low pH which may be relevant to the formation of mineralized deposits, radioactive waste repositories, wetlands, and other U- and organic-rich environmental systems.


Subject(s)
Radioactive Waste , Uranium , Adsorption , Dissolved Organic Matter , Hydrogen-Ion Concentration , Uranium/analysis
12.
Environ Sci Technol ; 55(14): 9949-9957, 2021 07 20.
Article in English | MEDLINE | ID: mdl-34235927

ABSTRACT

Particulate matter (PM) presents an environmental health risk for communities residing close to uranium (U) mine sites. However, the role of the particulate form of U on its cellular toxicity is still poorly understood. Here, we investigated the cellular uptake and toxicity of C-rich U-bearing particles as a model organic particulate containing uranyl citrate over a range of environmentally relevant concentrations of U (0-445 µM). The cytotoxicity of C-rich U-bearing particles in human epithelial cells (A549) was U-dose-dependent. No cytotoxic effects were detected with soluble U doses. Carbon-rich U-bearing particles with a wide size distribution (<10 µm) presented 2.7 times higher U uptake into cells than the particles with a narrow size distribution (<1 µm) at 100 µM U concentration. TEM-EDS analysis identified the intracellular translocation of clusters of C-rich U-bearing particles. The accumulation of C-rich U-bearing particles induced DNA damage and cytotoxicity as indicated by the increased phosphorylation of the histone H2AX and cell death, respectively. These findings reveal the toxicity of the particulate form of U under environmentally relevant heterogeneous size distributions. Our study opens new avenues for future investigations on the health impacts resulting from environmental exposures to the particulate form of U near mine sites.


Subject(s)
Uranium , Carbon , Coal , Dust/analysis , Humans , Particulate Matter/analysis , Particulate Matter/toxicity , Uranium/analysis , Uranium/toxicity
13.
J Toxicol Environ Health A ; 84(12): 503-517, 2021 06 18.
Article in English | MEDLINE | ID: mdl-33682625

ABSTRACT

The Southwestern United States has a legacy of industrial mining due to the presence of rich mineral ore deposits. The relationship between environmental inhaled particulate matter (PM) exposures and neurological outcomes within an autoimmune context is understudied. The aim of this study was to compare two regionally-relevant dusts from high-priority abandoned mine-sites, Claim 28 PM, from Blue Gap Tachee, AZ and St. Anthony mine PM, from the Pueblo of Laguna, NM and to expose autoimmune-prone mice (NZBWF1/J). Mice were randomly assigned to one of three groups (n = 8/group): DM (dispersion media, control), Claim 28 PM, or St. Anthony PM, subjected to oropharyngeal aspiration of (100 µg/50 µl), once per week for a total of 4 consecutive doses. A battery of immunological and neurological endpoints was assessed at 24 weeks of age including: bronchoalveolar lavage cell counts, lung gene expression, brain immunohistochemistry, behavioral tasks and serum autoimmune biomarkers. Bronchoalveolar lavage results demonstrated a significant increase in number of polymorphonuclear neutrophils following Claim 28 and St. Anthony mine PM aspiration. Lung mRNA expression showed significant upregulation in CCL-2 and IL-1ß following St. Anthony mine PM aspiration. In addition, neuroinflammation was present in both Claim 28 and St. Anthony mine-site derived PM exposure groups. Behavioral tasks resulted in significant deficits as determined by Y-maze new arm frequency following Claim 28 aspiration. Neutrophil elastase was significantly upregulated in the St. Anthony mine exposure group. Interestingly, there were no significant changes in serum autoantigens suggesting systemic inflammatory effects may be mediated through other molecular mechanisms following low-dose PM exposures.


Subject(s)
Air Pollutants/toxicity , Dust/analysis , Encephalitis/physiopathology , Learning/drug effects , Memory/drug effects , Particulate Matter/toxicity , Pneumonia/physiopathology , Animals , Arizona , Autoimmune Diseases/etiology , Biomarkers/metabolism , Disease Models, Animal , Dust/immunology , Encephalitis/chemically induced , Female , Inhalation Exposure/adverse effects , Mice , Mining , New Mexico , Particle Size , Pneumonia/chemically induced , Random Allocation
14.
Environ Sci Process Impacts ; 23(1): 73-85, 2021 Feb 04.
Article in English | MEDLINE | ID: mdl-33325952

ABSTRACT

We investigated the mechanisms of uranium (U) uptake by Tamarix (salt cedars) growing along the Rio Paguate, which flows throughout the Jackpile mine near Pueblo de Laguna, New Mexico. Tamarix were selected for this study due to the detection of U in the roots and shoots of field collected plants (0.6-58.9 mg kg-1), presenting an average bioconcentration factor greater than 1. Synchrotron-based micro X-ray fluorescence analyses of plant roots collected from the field indicate that the accumulation of U occurs in the cortex of the root. The mechanisms for U accumulation in the roots of Tamarix were further investigated in controlled-laboratory experiments where living roots of field plants were macerated for 24 h or 2 weeks in a solution containing 100 µM U. The U concentration in the solution decreased 36-59% after 24 h, and 49-65% in two weeks. Microscopic and spectroscopic analyses detected U precipitation in the root cell walls near the xylems of the roots, confirming the initial results from the field samples. High-resolution TEM was used to study the U fate inside the root cells, and needle-like U-P nanocrystals, with diameter <7 nm, were found entrapped inside vacuoles in cells. EXAFS shell-by-shell fitting suggest that U is associated with carbon functional groups. The preferable binding of U to the root cell walls may explain the U retention in the roots of Tamarix, followed by U-P crystal precipitation, and pinocytotic active transport and cellular entrapment. This process resulted in a limited translocation of U to the shoots in Tamarix plants. This study contributes to better understanding of the physicochemical mechanisms affecting the U uptake and accumulation by plants growing near contaminated sites.


Subject(s)
Nanoparticles , Tamaricaceae , Uranium , New Mexico , Phosphorus , Plant Roots/chemistry , Uranium/analysis
15.
Sci Data ; 7(1): 203, 2020 06 25.
Article in English | MEDLINE | ID: mdl-32587252

ABSTRACT

This dataset provides long-term information on the presence of the Iberian ibex (Capra pyrenaica hispanica Schimper, 1848) in Sierra Nevada (SE Iberian Peninsula). Data on the abundance and demographic structure of the Iberian ibex population were compiled over the last three decades. Transects were laid out to record different variables such as the number of individuals sighted, the perpendicular distance of each group of Iberian ibex to the transect line and sex as well as age of individuals in the case of males. These data enabled the calculation of population parameters such as density, sex ratio, birth rate, and age structure. These parameters are key for Iberian ibex conservation and management, given that Sierra Nevada harbours the largest population of this species in the Iberian Peninsula. The data set we present is structured using the Darwin Core biological standard, which contains 3,091 events (582 transect walk events and 2,509 group sighting events), 5,396 occurrences, and 2,502 measurements. The occurrences include the sightings of 11,436 individuals (grouped by sex and age) from 1993 to 2018 in a total of 88 transects distributed along Sierra Nevada, of which 33 have been continuously sampled since 2008.


Subject(s)
Goats , Animals , Birth Rate , Population Density , Sex Ratio , Spain
16.
Environ Sci Technol ; 54(7): 3979-3987, 2020 04 07.
Article in English | MEDLINE | ID: mdl-32176846

ABSTRACT

Natural or anthropogenic processes can increase the concentration of uranium (U) and arsenic (As) above the maximum contaminant levels in water sources. Bicarbonate and calcium (Ca) can have major impacts on U speciation and can affect the reactivity between U and As. We therefore investigated the reactivity of aqueous U and As mixtures with bicarbonate and Ca for acidic and neutral pH conditions. In experiments performed with 1 mM U and As mixtures, 10 mM Ca, and without added bicarbonate (pCO2 = 3.5), aqueous U decreased to <0.25 mM at pH 3 and 7. Aqueous As decreased the most at pH 3 (∼0.125 mM). Experiments initiated with 0.005 mM As and U showed similar trends. X-ray spectroscopy (i.e., XAS and EDX) and diffraction indicated that U-As-Ca- and U-Ca-bearing solids resemble uranospinite [Ca(UO2)2(AsO4)2·10H2O] and becquerelite [Ca(UO2)6O4(OH)6·8(H2O)]. These findings suggest that U-As-Ca-bearing solids formed in mixed solutions are stable at pH 3. However, the dissolution of U-As-Ca and U-Ca-bearing solids at pH 7 was observed in reactors containing 10 mM bicarbonate and Ca, suggesting a kinetic reaction of aqueous uranyl-calcium-carbonate complexation. Our study provides new insights regarding U and As mobilization for risk assessment and remediation strategies.


Subject(s)
Arsenic , Uranium , Bicarbonates , Calcium , Hydrogen-Ion Concentration
17.
Environ Sci (Camb) ; 6(3): 622-634, 2020 Mar 01.
Article in English | MEDLINE | ID: mdl-34306712

ABSTRACT

Uranium (U) contamination of drinking water often affects communities with limited resources, presenting unique technology challenges for U6+ treatment. Here, we develop a suite of chemically functionalized polymer (polyacrylonitrile; PAN) nanofibers for low pressure reactive filtration applications for U6+ removal. Binding agents with either nitrogen-containing or phosphorous-based (e.g., phosphonic acid) functionalities were blended (at 1-3 wt.%) into PAN sol gels used for electrospinning, yielding functionalized nanofiber mats. For comparison, we also functionalized PAN nanofibers with amidoxime (AO) moieties, a group well-recognized for its specificity in U6+ uptake. For optimal N-based (Aliquat® 336 or Aq) and P-containing [hexadecylphosphonic acid (HPDA) and bis(2-ethylhexyl)phosphate (HDEHP)] binding agents, we then explored their use for U6+ removal across a range of pH values (pH 2-7), U6+ concentrations (up to 10 µM), and in flow through systems simulating point of use (POU) water treatment. As expected from the use of quaternary ammonium groups in ion exchange, Aq-containing materials appear to sequester U6+ by electrostatic interactions; while uptake by these materials is limited, it is greatest at circumneutral pH where positively charged N groups bind negatively charged U6+ complexes. In contrast, HDPA and HDEHP perform best at acidic pH representative of mine drainage, where surface complexation of the uranyl cation likely drives uptake. Complexation by AO exhibited the best performance across all pH values, although U6+ uptake via surface precipitation may also occur near circumneutral pH value and at high (10 µM) dissolved U6+ concentrations. In simulated POU treatment studies using a dead-end filtration system, we observed U removal in AO-PAN systems that is insensitive to common co-solutes in groundwater (e.g., hardness and alkalinity). While more research is needed, our results suggest that only 80 g (about 0.2 lbs.) of AO-PAN filter material would be needed to treat an individual's water supply (contaminated at ten-times the U.S. EPA Maximum Contaminant Level for U) for one year.

18.
Minerals (Basel) ; 10(10)2020 Oct.
Article in English | MEDLINE | ID: mdl-33425380

ABSTRACT

The crystal chemistry of carnotite (prototype formula: K2(UO2)2(VO4)2·3H2O) occurring in mine wastes collected from Northeastern Arizona was investigated by integrating spectroscopy, electron microscopy, and x-ray diffraction analyses. Raman spectroscopy confirms that the uranyl vanadate phase present in the mine waste is carnotite, rather than the rarer polymorph vandermeerscheite. X-ray diffraction patterns of the carnotite occurring in these mine wastes are in agreement with those reported in the literature for a synthetic analog. Carbon detected in this carnotite was identified as organic carbon inclusions using transmission electron microscopy (TEM) and electron energy loss spectroscopy (EELS) analyses. After excluding C and correcting for K-drift from the electron microprobe analyses, the composition of the carnotite was determined as 8.64% K2O, 0.26% CaO, 61.43% UO3, 20.26% V2O5, 0.38% Fe2O3, and 8.23% H2O. The empirical formula, (K1.66 Ca0.043 Al(OH)2+ 0.145 Fe(OH)2+ 0.044)((U0.97)O2)2((V1.005)O4)2·4H2O of the studied carnotite, with an atomic ratio 1.9:2:2 for K:U:V, is similar to the that of carnotite (K2(UO2)2(VO4)2·3H2O) reported in the literature. Lattice spacing data determined using selected area electron diffraction (SAED)-TEM suggests: (1) complete amorphization of the carnotite within 120 s of exposure to the electron beam and (2) good agreement of the measured d-spacings for carnotite in the literature. Small Differences between the measured and literature d-spacing values are likely due to the varying degree of hydration between natural and synthetic materials. Such information about the crystal chemistry of carnotite in mine wastes is important for an improved understanding of the occurrence and reactivity of U, V, and other elements in the environment.

19.
ACS Earth Space Chem ; 3(10): 2190-2196, 2019 Oct 17.
Article in English | MEDLINE | ID: mdl-31742240

ABSTRACT

The role of calcium (Ca) on the cellular distribution of U(VI) in Brassica juncea roots and root-to-shoot translocation was investigated using hydroponic experiments, microscopy, and spectroscopy. Uranium accumulated mainly in the roots (727-9376 mg kg-1) after 30 days of exposure to 80 µM dissolved U in water containing 1 mM HCO3 - at different Ca concentrations (0-6 mM) at pH 7.5. However, the concentration of U in the shoots increased 22 times in experiments with 6 mM Ca compared to 0 mM Ca. In the Ca control experiment, transmission electron microscopy-energy-dispersive spectroscopy analyses detected U-P-bearing precipitates in the cortical apoplast of parenchyma cells. In experiments with 0.3 mM Ca, U-P-bearing precipitates were detected in the cortical apoplast and the bordered pits of xylem cells. In experiments with 6 mM Ca, U-P-bearing precipitates aggregated in the xylem with no apoplastic precipitation. These results indicate that Ca in carbonate water inhibits the transport and precipitation of U in the root cortical apoplast and facilitates the symplastic transport and translocation toward shoots. These findings reveal the considerable role of Ca in the presence of carbonate in facilitating the transport of U in plants and present new insights for future assessment and phytoremediation strategies.

20.
Chem Geol ; 524: 345-355, 2019 Oct 05.
Article in English | MEDLINE | ID: mdl-31406388

ABSTRACT

We investigated the effect of bicarbonate and oxidizing agents on uranium (U) reactivity and subsequent dissolution of U(IV) and U(VI) mineral phases in the mineralized deposits from Jackpile mine, Laguna Pueblo, New Mexico, by integrating laboratory experiments with spectroscopy, microscopy and diffraction techniques. Uranium concentration in solid samples from mineralized deposit obtained for this study exceeded 7000 mg kg-1, as determined by X-ray fluorescence (XRF). Results from X-ray photoelectron spectroscopy (XPS) suggest the coexistence of U(VI) and U(IV) at a ratio of 19:1 at the near surface region of unreacted solid samples. Analyses made using X-ray diffraction (XRD) and electron microprobe detected the presence of coffinite (USiO4) and uranium-phosphorous-potassium (U-P-K) mineral phases. Imaging, mapping and spectroscopy results from scanning transmission electron microscopy (STEM) indicate that the U-P-K phases were encapsulated by carbon. Despite exposing the solid samples to strong oxidizing conditions, the highest aqueous U concentrations were measured from samples reacted with 100% air saturated 10 mM NaHCO3 solution, at pH 7.5. Analyses using X-ray absorption spectroscopy (XAS) indicate that all the U(IV) in these solid samples were oxidized to U(VI) after reaction with dissolved oxygen and hypochlorite (OCl-) in the presence of bicarbonate (HCO3 -). The reaction between these organic rich deposits, and 100% air saturated bicarbonate solution (containing dissolved oxygen), can result in considerable mobilization of U in water, which has relevance to the U concentrations observed at the Rio Paguate across the Jackpile mine. Results from this investigation provide insights on the reactivity of carbon encapsulated U-phases under mild and strong oxidizing conditions that have important implication in U recovery, remediation and risk exposure assessment of sites.

SELECTION OF CITATIONS
SEARCH DETAIL
...