Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
2.
Biochim Biophys Acta ; 1863(10): 2379-93, 2016 10.
Article in English | MEDLINE | ID: mdl-27001633

ABSTRACT

The mitochondrial ADP/ATP carrier imports ADP from the cytosol and exports ATP from the mitochondrial matrix, which are key transport steps for oxidative phosphorylation in eukaryotic organisms. The transport protein belongs to the mitochondrial carrier family, a large transporter family in the inner membrane of mitochondria. It is one of the best studied members of the family and serves as a paradigm for the molecular mechanism of mitochondrial carriers. Structurally, the carrier consists of three homologous domains, each composed of two transmembrane α-helices linked with a loop and short α-helix on the matrix side. The transporter cycles between a cytoplasmic and matrix state in which a central substrate binding site is alternately accessible to these compartments for binding of ADP or ATP. On both the cytoplasmic and matrix side of the carrier are networks consisting of three salt bridges each. In the cytoplasmic state, the matrix salt bridge network is formed and the cytoplasmic network is disrupted, opening the central substrate binding site to the intermembrane space and cytosol, whereas the converse occurs in the matrix state. In the transport cycle, tighter substrate binding in the intermediate states allows the interconversion of conformations by lowering the energy barrier for disruption and formation of these networks, opening and closing the carrier to either side of the membrane in an alternating way. Conversion between cytoplasmic and matrix states might require the simultaneous rotation of three domains around a central translocation pathway, constituting a unique mechanism among transport proteins. This article is part of a Special Issue entitled: Mitochondrial Channels edited by Pierre Sonveaux, Pierre Maechler and Jean-Claude Martinou.


Subject(s)
Adenosine Diphosphate/metabolism , Adenosine Triphosphate/metabolism , Mitochondrial ADP, ATP Translocases/metabolism , Mitochondrial Membranes/metabolism , Amino Acid Sequence , Animals , Biological Transport, Active , Bongkrekic Acid/pharmacology , Cardiolipins/metabolism , Cattle , Consensus Sequence , Humans , Mitochondrial ADP, ATP Translocases/antagonists & inhibitors , Mitochondrial ADP, ATP Translocases/chemistry , Models, Molecular , Phosphate Transport Proteins/metabolism , Protein Conformation , Saccharomyces cerevisiae Proteins/chemistry , Saccharomyces cerevisiae Proteins/metabolism , Substrate Specificity
3.
J Biol Chem ; 290(13): 8206-17, 2015 Mar 27.
Article in English | MEDLINE | ID: mdl-25653283

ABSTRACT

Mitochondrial carriers, including uncoupling proteins, are unstable in detergents, which hampers structural and mechanistic studies. To investigate carrier stability, we have purified ligand-free carriers and assessed their stability with a fluorescence-based thermostability assay that monitors protein unfolding with a thiol-reactive dye. We find that mitochondrial carriers from both mesophilic and thermophilic organisms exhibit poor stability in mild detergents, indicating that instability is inherent to the protein family. Trends in the thermostability of yeast ADP/ATP carrier AAC2 and ovine uncoupling protein UCP1 allow optimal conditions for stability in detergents to be established but also provide mechanistic insights into the interactions of lipids, substrates, and inhibitors with these proteins. Both proteins exhibit similar stability profiles across various detergents, where stability increases with the size of the associated detergent micelle. Detailed analysis shows that lipids stabilize carriers indirectly by increasing the associated detergent micelle size, but cardiolipin stabilizes by direct interactions as well. Cardiolipin reverses destabilizing effects of ADP and bongkrekic acid on AAC2 and enhances large stabilizing effects of carboxyatractyloside, revealing that this lipid interacts in the m-state and possibly other states of the transport cycle, despite being in a dynamic interface. Fatty acid activators destabilize UCP1 in a similar way, which can also be prevented by cardiolipin, indicating that they interact like transport substrates. Our controls show that carriers can be soluble but unfolded in some commonly used detergents, such as the zwitterionic Fos-choline-12, which emphasizes the need for simple validation assays like the one used here.


Subject(s)
Lipids/chemistry , Mitochondrial ADP, ATP Translocases/chemistry , Saccharomyces cerevisiae Proteins/chemistry , Cardiolipins/chemistry , Detergents/chemistry , Enzyme Inhibitors/chemistry , Humans , Ion Channels/chemistry , Micelles , Mitochondrial ADP, ATP Translocases/antagonists & inhibitors , Mitochondrial Proteins/chemistry , Protein Binding , Protein Denaturation , Protein Stability , Saccharomyces cerevisiae Proteins/antagonists & inhibitors , Solubility , Transition Temperature , Uncoupling Protein 1
SELECTION OF CITATIONS
SEARCH DETAIL
...