Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
Anaerobe ; 87: 102839, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38552896

ABSTRACT

Spore-forming pathogens have a unique capacity to thrive in diverse environments, and with temporal persistence afforded through their ability to sporulate. Their prevalence in diverse ecosystems requires a One Health approach to identify critical reservoirs and outbreak-associated transmission chains, given their capacity to freely move across soils, waterways, foodstuffs and as commensals or infecting pathogens in human and animal populations. Among anaerobic spore-formers, genomic resources for pathogens including C. botulinum, C. difficile, and C. perfringens enable our capacity to identify common and unique factors that support their persistence in diverse reservoirs and capacity to cause disease. Publicly available genomic resources for spore-forming pathogens at NCBI's Pathogen Detection program aid outbreak investigations and longitudinal monitoring in national and international programs in public health and food safety, as well as for local healthcare systems. These tools also enable research to derive new knowledge regarding disease pathogenesis, and to inform strategies in disease prevention and treatment. As global community resources, the continued sharing of strain genomic data and phenotypes further enhances international resources and means to develop impactful applications. We present examples showing use of these resources in surveillance, including capacity to assess linkages among clinical, environmental, and foodborne reservoirs and to further research investigations into factors promoting their persistence and virulence in different settings.


Subject(s)
Clostridium Infections , One Health , Humans , Clostridium Infections/microbiology , Clostridium Infections/epidemiology , Animals , Clostridium/genetics , Clostridium/isolation & purification , Clostridium/classification , Disease Outbreaks/prevention & control , Genomics/methods , Bacterial Toxins/genetics
2.
bioRxiv ; 2024 Jan 09.
Article in English | MEDLINE | ID: mdl-38260382

ABSTRACT

Spore-forming pathogens have a unique capacity to thrive in diverse environments, and with temporal persistence afforded through their ability to sporulate. These behaviors require a One Health approach to identify critical reservoirs and outbreak-associated transmission chains, given their capacity to freely move across soils, waterways, foodstuffs, and as commensals or infecting pathogens in human and veterinary populations. Among anaerobic spore-formers, genomic resources for pathogens including C. botulinum, C. difficile, and C. perfringens enable our capacity to identify common and unique factors that support their persistence in diverse reservoirs and capacity to cause disease. Publicly available genomic resources for spore-forming pathogens at NCBI's Pathogen Detection program aid outbreak investigations and longitudinal monitoring in national and international programs in public health and food safety, as well as for local healthcare systems. These tools also enable research to derive new knowledge regarding disease pathogenesis, and to inform strategies in disease prevention and treatment. As global community resources, the continued sharing of strain genomic data and phenotypes further enhances international resources and means to develop impactful applications. We present examples showing use of these resources in surveillance, including capacity to assess linkages among clinical, environmental, and foodborne reservoirs and to further research investigations into factors promoting their persistence and virulence in different settings.

3.
bioRxiv ; 2023 Aug 28.
Article in English | MEDLINE | ID: mdl-37292778

ABSTRACT

Clostridioides difficile (CD) is a sporulating and toxin-producing nosocomial pathogen that opportunistically infects the gut, particularly in patients with depleted microbiota after antibiotic exposure. Metabolically, CD rapidly generates energy and substrates for growth from Stickland fermentations of amino acids, with proline being a preferred reductive substrate. To investigate the in vivo effects of reductive proline metabolism on C. difficile's virulence in an enriched gut nutrient environment, we evaluated wild-type and isogenic ΔprdB strains of ATCC43255 on pathogen behaviors and host outcomes in highly susceptible gnotobiotic mice. Mice infected with the ΔprdB mutant demonstrated extended survival via delayed colonization, growth and toxin production but ultimately succumbed to disease. In vivo transcriptomic analyses demonstrated how the absence of proline reductase activity more broadly disrupted the pathogen's metabolism including failure to recruit oxidative Stickland pathways, ornithine transformations to alanine, and additional pathways generating growth-promoting substrates, contributing to delayed growth, sporulation, and toxin production. Our findings illustrate the central role for proline reductase metabolism to support early stages of C. difficile colonization and subsequent impact on the pathogen's ability to rapidly expand and cause disease.

4.
Anim Microbiome ; 4(1): 4, 2022 Jan 05.
Article in English | MEDLINE | ID: mdl-34983694

ABSTRACT

BACKGROUND: Targeted modification of the dairy calf ruminal microbiome has been attempted through rumen fluid inoculation to alter productive phenotypes later in life. However, sustainable effects of the early life interventions have not been well studied, particularly on the metabolically active rumen microbiota and its functions. This study investigated the sustained effects of adult-derived rumen fluid inoculations in pre-weaning dairy calves on the active ruminal microbiome of post-weaned dairy calves analyzed via RNA-sequencing. RESULTS: Two different adult-derived microbial inocula (bacterial- or protozoal-enriched rumen fluid; BE or PE, respectively) were administered in pre-weaned calves (3-6 weeks) followed by analyzing active rumen microbiome of post-weaned calves (9 weeks). The shared bacterial community at the genus level of 16S amplicon-seq and RNA-seq datasets was significantly different (P = 0.024), 21 out of 31 shared major bacterial genera differed in their relative abundance between the two analytic pipelines. No significant differences were found in any of the prokaryotic alpha- and beta-diversity measurements (P > 0.05), except the archaeota that differed for BE based on the Bray-Curtis dissimilarity matrix (P = 0.009). Even though the relative abundances of potentially transferred microbial and functional features from the inocula were minor, differentially abundant prokaryotic genera significantly correlated to various fermentation and animal measurements including butyrate proportion, body weight, and papillae length and counts. The overall microbial functions were affected quantitatively by BE and qualitatively by PE (P < 0.05), and this might be supported by the individual KEGG module and CAZymes profile differences. Exclusive networks between major active microbial (bacterial and archaeal genera) and functional features (KEGG modules) were determined which were differed by microbial inoculations. CONCLUSIONS: This study demonstrated that actively transcribed microbial and functional features showed reliable connections with different fermentations and animal development responses through adult rumen fluid inoculations compared to our previous 16S amplicon sequencing results. Exclusive microbial and functional networks of the active rumen microbiome of dairy calves created by BE and PE might also be responsible for the different ruminal and animal characteristics. Further understanding of the other parts of the gastrointestinal tract (e.g., abomasum, omasum, and small intestine) using metatranscriptomics will be necessary to elucidate undetermined biological factors affected by microbial inoculations.

5.
J Anim Physiol Anim Nutr (Berl) ; 106(1): 181-193, 2022 Jan.
Article in English | MEDLINE | ID: mdl-33655648

ABSTRACT

Gut microbiota are essential to nutrient metabolism and the maintenance of hindgut health. The characterization of faecal bacterial communities from healthy individuals is important for the establishment of baseline data that can be compared to periods of gut dysbiosis. Diet is a key determinant of the faecal microbial community structure and generation of volatile fatty acids, a main energy source for the host. While rhinoceroses are herbivores, black rhinoceroses are browsers and white rhinoceroses are grazers. The objective of our study was to characterize and compare diets, faecal bacterial communities, nutrients and metabolites between and amongst Southern white rhinoceroses and Southern black rhinoceroses (n = 3 rhinos/species) managed at Disney's Animal Kingdom® . Faecal bacterial communities were similar between individual white rhinos and dissimilar between species and individual black rhinos. Faecal butyrate and propionate molar proportions and concentrations were greater in black rhinos than white rhinos, whereas lactate was greater in white rhinos. The Shannon diversity, total operational taxonomic units, and relative abundance of Firmicutes were greater in white than black rhinos. The relative abundance of Proteobacteria in faeces from black rhinos was 3-fold greater than from white rhinos. One black rhino had a greater relative abundance of Verrucomicrobia (7.45 ± 1.31%) than all other individual rhinos (0.01-1.37%). White rhinoceroses demonstrated similar abundances of bacterial phyla and communities between one another and by individual, while black rhinoceroses were more dissimilar by individual. The dissimilarities between black rhinos were suspected to be due to total diet consumption variability, including browse diversity, and lack of direct contact. In contrast, the white rhinos commingled (i.e. nose-to-nose contact) and consumed similar amounts of hay, pellets and training items. These results suggest that species-specific diets and the individual contribute to differences in faecal bacterial communities, nutrients and metabolites between black and white rhinos housed at the same institution.


Subject(s)
Nutrients , Perissodactyla , Animals , Feces , Managed Care Programs , Species Specificity
6.
Front Microbiol ; 12: 625488, 2021.
Article in English | MEDLINE | ID: mdl-33717013

ABSTRACT

Adult rumen fluid inoculations have been considered to facilitate the establishment of rumen microbiota of pre-weaned dairy calves. However, the sustained effects of the inoculations remain to be explored. In our previous study, 20 pre-weaned dairy calves had been dosed with four types of adult rumen inoculums [autoclaved rumen fluid, bacterial-enriched rumen fluid (BE), protozoal-enriched (PE), and BE + PE] weekly at 3 to 6 weeks of age. To verify the sustained effect of adult rumen inoculation, the rumen bacterial communities, fermentation characteristics, and animal performance measurements were measured after sacrifice from 20 post-weaned dairy bull calves (9 weeks of age). Ruminal pH tended to be lower in BE treated calves (n = 10). All PE treated calves had rumen ciliates (>104 cells per ml of rumen fluid). PE treated calves had greater VFA concentrations (P = 0.052), lower molar proportions of isobutyrate (P = 0.073), and butyrate (P = 0.019) compared to those of control calves. No treatment differences were found in all animal performance measurements. Both PE and BE inocula increased bacterial species richness, Faith's phylogenetic diversity, and Shannon's index in rumen liquid fractions. However, the relative proportion of those bacterial taxa possibly transferred from the donor's rumen was minor. Microbial network analysis showed different co-occurrence and mutually exclusive interactions between treatments of microbial inoculations. Collectively, adult rumen inoculations in pre-weaned dairy calves slightly altered the rumen bacteriome of post-weaned calves without changing fermentation and animal performance.

7.
Front Microbiol ; 10: 1651, 2019.
Article in English | MEDLINE | ID: mdl-31396179

ABSTRACT

The objective of this experiment was to determine if dosing pre-weaned calves with enriched ruminal microbiota alters the rumen microbial environment and growth performance. Twenty Holstein bull calves were removed from their dam at birth, fed 3.8 L colostrum within 4 h after birth, and housed individually. Calves were fed pasteurized milk 3×/d from 0 to 7 weeks of age and offered a texturized calf starter ad libitum at 6 days of age. A randomized complete block design with repeated measures and a 2 × 2 factorial arrangement of treatments was used to evaluate responses. Treatments were administered by stomach intubation once per week from 3 to 6 weeks of age and included: 50 mL autoclaved rumen fluid (RF), 50 mL bacterial-enriched RF (BE), 50 mL protozoal-enriched RF (PE); or 50 mL of each BE and PE inoculum. A rumen content composite was collected from 4 rumen fistulated, lactating cows and used to create the inocula. BE inocula were microscopically confirmed to be free of ciliate protozoa before inoculation, while PE contained 2.9 ± 2.2 × 105 protozoa/mL. RF was collected from the calves once per week before 50 mL of the inoculum was administered. Animal performance (e.g., weight gain and dry matter intake) was not altered by inocula type. All calves were microscopically free of rumen ciliates before inoculum administration and calves that did not receive PE remained ciliate-free. Ciliate protozoa were observed in RF from 6, 8, and 6 PE treated calves (n = 10) at weeks 4, 5, and 6, respectively. Ruminal NH3 was lower in PE treated calves (3.3 vs. 6.8 ± 1.0 mM), while ruminal butyrate molar percent was greater in BE treated calves (10.8 vs. 8.3 ± 0.8). Rumen bacterial diversity measures did not differ by treatment at 3-6 weeks. Individual calf bacterial communities from treated calves became temporarily similar to the inocula at 4 weeks of age, but these communities diverged from the inocula at 5 weeks. This study provides new information about two types of rumen-derived inocula and insight into the challenges of directing the rumen microbial environment in the pre-weaned calf.

8.
Genome Biol ; 20(1): 153, 2019 08 02.
Article in English | MEDLINE | ID: mdl-31375138

ABSTRACT

We describe a method that adds long-read sequencing to a mix of technologies used to assemble a highly complex cattle rumen microbial community, and provide a comparison to short read-based methods. Long-read alignments and Hi-C linkage between contigs support the identification of 188 novel virus-host associations and the determination of phage life cycle states in the rumen microbial community. The long-read assembly also identifies 94 antimicrobial resistance genes, compared to only seven alleles in the short-read assembly. We demonstrate novel techniques that work synergistically to improve characterization of biological features in a highly complex rumen microbial community.


Subject(s)
Drug Resistance, Microbial/genetics , Metagenomics/methods , Microbiota/genetics , Sequence Analysis, DNA/methods , Viruses/genetics , Animals , Cattle , Clustered Regularly Interspaced Short Palindromic Repeats , Gene Transfer, Horizontal , Genes, Microbial , Open Reading Frames , Prophages/genetics , Rumen/microbiology , Rumen/virology , Viruses/isolation & purification
9.
BMC Microbiol ; 16: 78, 2016 May 04.
Article in English | MEDLINE | ID: mdl-27141986

ABSTRACT

BACKGROUND: Enteric methane from rumen methanogens is responsible for 25.9 % of total methane emissions in the United States. Rumen methanogens also contribute to decreased animal feed efficiency. For methane mitigation strategies to be successful, it is important to establish which factors influence the rumen methanogen community and rumen volatile fatty acids (VFA). In the present study, we used next-generation sequencing to determine if dairy breed and/or days in milk (DIM) (high-fiber periparturient versus high-starch postpartum diets) affect the rumen environment and methanogen community of primiparous Holstein, Jersey, and Holstein-Jersey crossbreeds. RESULTS: When the 16S rRNA gene sequences were processed and assigned to operational taxonomic units (OTU), a core methanogen community was identified, consisting of Methanobrevibacter (Mbr.) smithii, Mbr. thaueri, Mbr. ruminantium, and Mbr. millerae. The 16S rRNA gene sequence reads clustered at 3 DIM, but not by breed. At 3 DIM, the mean % abundance of Mbr. thaueri was lower in Jerseys (26.9 %) and higher in Holsteins (30.7 %) and Holstein-Jersey crossbreeds (30.3 %) (P < 0.001). The molar concentrations of total VFA were higher at 3 DIM than at 93, 183, and 273 DIM, whereas the molar proportions of propionate were increased at 3 and 93 DIM, relative to 183 and 273 DIM. Rumen methanogen densities, distributions of the Mbr. species, and VFA molar proportions did not differ by breed. CONCLUSIONS: The data from the present study suggest that a core methanogen community is present among dairy breeds, through out a lactation. Furthermore, the methanogen communities were more influenced by DIM and the breed by DIM interactions than breed differences.


Subject(s)
High-Throughput Nucleotide Sequencing/methods , Methanobacteriaceae/classification , Methanobacteriaceae/isolation & purification , Rumen/microbiology , Sequence Analysis, DNA/methods , Animal Feed , Animals , Cattle , Cluster Analysis , DNA, Bacterial/genetics , DNA, Ribosomal/genetics , Fatty Acids, Volatile/metabolism , Female , Lactation , Methanobacteriaceae/genetics , Peripartum Period , Postpartum Period , RNA, Ribosomal, 16S/genetics , Rumen/metabolism
10.
FEMS Microbiol Ecol ; 92(5): fiw059, 2016 May.
Article in English | MEDLINE | ID: mdl-26985012

ABSTRACT

Rumen bacteria form a dynamic, complex, symbiotic relationship with their host, degrading forages to provide volatile fatty acids (VFA) and other substrates as energy to the animal. The objectives were to characterize rumen bacteria in three genetic lines of primiparous dairy cattle, Holstein (HO, n = 7), Jersey (JE, n = 8), and HO × JE crossbreeds (CB, n = 7) across a lactation [3, 93, 183 and 273 days in milk (DIM)] and correlate these factors with VFA, bacterial cell membrane fatty acids (FA), and animal production (i.e. milk yield). This study employed Illumina MiSeq (v. 3) to investigate rumen bacterial communities and gas-liquid chromatography/mass spectroscopy to identify bacterial membrane FA. Lactation stage had a prominent effect on rumen bacterial communities, whereas genetics had a lesser effect on rumen bacteria. The FA composition of bacterial cell membranes was affected by both lactation stage and genetics. Few correlations existed between VFA and bacterial communities; however, moderate correlations occurred between milk yield, protein percentage, fat yield and rumen bacterial communities. Positive correlations were found between branched-chain FA (BCFA) in bacterial cell membranes and bacterial genera. In conclusion, bacterial communities and their FA compositions are more affected by stage of lactation than by genetics of dairy cow.


Subject(s)
Bacteria/classification , Cattle/microbiology , Fatty Acids, Volatile/analysis , Rumen/microbiology , Animals , Bacteria/chemistry , Bacteria/isolation & purification , Cattle/classification , Cattle/genetics , Cell Membrane/chemistry , Crosses, Genetic , Fatty Acids/analysis , Female , Lactation , Milk/chemistry , Polymerase Chain Reaction , Rumen/chemistry
11.
PLoS One ; 11(3): e0150386, 2016.
Article in English | MEDLINE | ID: mdl-26930646

ABSTRACT

Dairy products contain bioactive fatty acids (FA) and are a unique dietary source of an emerging class of bioactive FA, branched-chain fatty acids (BCFA). The objective of this study was to compare the content and profile of bioactive FA in milk, with emphasis on BCFA, among Holstein (HO), Jersey (JE), and first generation HO x JE crossbreeds (CB) across a lactation to better understand the impact of these factors on FA of interest to human health. Twenty-two primiparous cows (n = 7 HO, n = 7 CB, n = 8 JE) were followed across a lactation. All cows were fed a consistent total mixed ration (TMR) at a 70:30 forage to concentrate ratio. Time points were defined as 5 days in milk (DIM), 95 DIM, 185 DIM, and 275 DIM. HO and CB had a higher content of n-3 FA at 5 DIM than JE and a lower n-6:n-3 ratio. Time point had an effect on the n-6:n-3 ratio, with the lowest value observed at 5 DIM and the highest at 185 DIM. The content of vaccenic acid was highest at 5 DIM, yet rumenic acid was unaffected by time point or breed. Total odd and BCFA (OBCFA) were higher in JE than HO and CB at 185 and 275 DIM. Breed affected the content of individual BCFA. The content of iso-14:0 and iso-16:0 in milk was higher in JE than HO and CB from 95 to 275 DIM. Total OBCFA were affected by time point, with the highest content in milk at 275 DIM. In conclusion, HO and CB exhibited a higher content of several bioactive FA in milk than JE. Across a lactation the greatest content of bioactive FA in milk occurred at 5 DIM and OBCFA were highest at 275 DIM.


Subject(s)
Fatty Acids/chemistry , Milk/chemistry , Animal Feed , Animal Nutritional Physiological Phenomena/physiology , Animals , Breast Feeding/methods , Breeding , Cattle , Diet , Female , Humans , Lactation/physiology , Linoleic Acids, Conjugated/chemistry , Oleic Acids/chemistry
12.
J Agric Food Chem ; 64(9): 2021-9, 2016 Mar 09.
Article in English | MEDLINE | ID: mdl-26752342

ABSTRACT

The protozoal fatty acid (FA) composition and community structure are important to dairy cattle nutrition and their products. The purpose of the study was to observe if the rumen protozoal FA profiles and protozoal community structure differed by breed and lactation stage. At 93, 183, and 273 days in milk (DIM), whole rumen digesta samples were collected from seven co-housed Holstein (H), eight Jersey (J), and seven Holstein-Jersey crossbreed (C) cows. Rumen protozoal linoleic acid was higher at 183 DIM (8.1%) and 273 DIM (8.3%) than at 93 DIM (5.7%). Oleic acid was the most abundant protozoal unsaturated FA (10.1%). Protozoal rumenic acid and protozoa of the genus Metadinium were higher in J (9.9%) than in H (0.52%) and C (0.96%). Protozoa belonging to the genus Entodinium were more abundant in H (45.2%) than in J (23.4%) and C (30.2%). In conclusion, breed and DIM affected several protozoal FAs and genera.


Subject(s)
Cattle/physiology , Ciliophora/chemistry , Fatty Acids/analysis , Lactation/physiology , Rumen/chemistry , Animals , Breeding , Ciliophora/classification , Ciliophora/genetics , DNA, Protozoan/analysis , Female , Linoleic Acid/analysis , Linoleic Acids, Conjugated/analysis , Oleic Acid/analysis , Parity , Polymerase Chain Reaction/veterinary , RNA, Ribosomal, 18S/genetics , Species Specificity
13.
Front Microbiol ; 6: 776, 2015.
Article in English | MEDLINE | ID: mdl-26284054

ABSTRACT

In herbivores, enteric methane is a by-product from the digestion of plant biomass by mutualistic gastrointestinal tract (GIT) microbial communities. Methane is a potent greenhouse gas that is not assimilated by the host and is released into the environment where it contributes to climate change. Since enteric methane is exclusively produced by methanogenic archaea, the investigation of mutualistic methanogen communities in the GIT of herbivores has been the subject of ongoing research by a number of research groups. In an effort to uncover trends that would facilitate the development of efficient methane mitigation strategies for livestock species, we have in this review summarized and compared currently available results from published studies on this subject. We also offer our perspectives on the importance of pursuing current research efforts on the sequencing of gut methanogen genomes, as well as investigating their cellular physiology and interactions with other GIT microorganisms.

14.
Microb Ecol ; 69(3): 577-85, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25351144

ABSTRACT

Although the rumen microbiome of domesticated ruminants has been evaluated, few studies have explored the rumen microbiome of wild ruminants, and no studies have identified the rumen microbiome in the impala (Aepyceros melampus melampus). In the present study, next-generation sequencing and real-time polymerase chain reaction were used to investigate the diversity and density of the bacteria and methanogenic archaea residing in the rumen of five adult male impalas, culled during the winter dry season in Pongola, South Africa. A total of 15,323 bacterial 16S rRNA gene sequences (from five impala), representing 3,892 different phylotypes, were assigned to 1,902 operational taxonomic units (OTUs). A total of 20,124 methanogen 16S rRNA gene sequence reads (from four impala), of which 5,028 were unique, were assigned to 344 OTUs. From the total sequence reads, Bacteroidetes, Proteobacteria, and Firmicutes were the most abundant bacterial phyla. While the majority of the bacterial genera found were unclassified, Prevotella and Cupriavidus were the most abundant classified genera. For methanogens, the genera Methanobrevibacter and Methanosphaera represented 94.3% and 4.0% of the classified sequences, respectively. Most notable was the identification of Methanobrevibacter thaueri-like 16S rRNA gene sequence reads in all four impala samples, representing greater than 30% of each individual's total sequences. Both data sets are accessible through NCBI's Sequence Read Archive (SRA), under study accession number SRP [048619]. The densities of bacteria (1.26 × 10(10)-3.82 × 10(10) cells/ml whole rumen contents) and methanogens (4.48 × 10(8)-7.2 × 10(9) cells/ml of whole rumen contents) from five individual impala were similar to those typically observed in domesticated ruminants.


Subject(s)
Antelopes/microbiology , Archaea/isolation & purification , Bacteria/isolation & purification , Gastrointestinal Microbiome , Animals , Archaea/classification , Archaea/genetics , Bacteria/classification , Bacteria/genetics , Male , Molecular Sequence Data , RNA, Archaeal/genetics , RNA, Bacterial/genetics , RNA, Ribosomal, 16S/genetics , Rumen/microbiology , South Africa
SELECTION OF CITATIONS
SEARCH DETAIL
...