Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 13(1): 22119, 2023 12 13.
Article in English | MEDLINE | ID: mdl-38092830

ABSTRACT

Collagen glue has been used for nearly two centuries to consolidate bone material, although its prevalence in museum collections is only now becoming visible. Identifying and removing collagen glue is crucial before the execution of any geochemical or molecular analyses. Palaeolithic bone objects from old excavations intended for radiocarbon dating were first analysed using ZooMS (Zooarchaeology by Mass Spectrometry) to identify the animal species, however peaks characteristic of both cattle and whale were discovered. Two extraction methods for ZooMS were tested to identify the authentic animal species of these objects, which revealed that these were originally whale bone objects that had been consolidated with cattle collagen glue. This is the first time animal collagen glue has been identified in archaeological remains with ZooMS, illustrating again the incredible versatility of this technique. Another technique, Fourier Transform Infrared Spectroscopy in Attenuated Total Reflectance mode (FTIR-ATR), was also tested if it could rapidly identify the presence of collagen glue in archaeological bone material, which was not the case. Two other cleaning methods were tested to remove bone glue contamination prior to radiocarbon dating, along with two modified collagen extraction methods for ZooMS. These methods were applied to bone blank samples (FmC = 0.0031 ± 0.0002, (n = 219), 47 336 ± 277 yr BP) that were experimentally consolidated with collagen glue and to the Palaeolithic bone material (ca. 15 000 and 12 000 yr BP). The experimental bone blanks produced excellent 14C ages, suggesting the cleaning methods were successful, however the 14C ages for some of the Palaeolithic material remained too young considering their contextual age, suggesting that the collagen glue contamination had most likely cross-linked to the authentic collagen molecule. More research is needed in order to gain a deeper understanding of the occurrence and elimination of cross-linked collagen-based glues in material from museum collections.


Subject(s)
Collagen , Radiometric Dating , Animals , Cattle , Radiometric Dating/methods , Carbon Radioisotopes/analysis , Collagen/chemistry , Bone and Bones/chemistry , Archaeology/methods , Whales
2.
Anal Chim Acta ; 1041: 131-145, 2018 Dec 24.
Article in English | MEDLINE | ID: mdl-30340685

ABSTRACT

Exogenous carbonaceous contaminants coming from sediments significantly bias the radiocarbon date of collagen samples extracted from archaeological bone and teeth. In this study, a new approach combining pyrolysis, comprehensive gas chromatography and mass spectrometry (Py-GC × GC/MS) was proposed to ensure their removal during the demineralization and bone collagen extraction. This approach permitted to identify hydrocarbon contaminants for archaeological samples from the Neolithic period, in 30-40 µg of collagen. The use of 2D GC improved importantly the separation, selectivity and resolution compared to 1D GC thus permitting to detect organic contaminants within the complex chromatograms issued from collagen pyrolysis. Moreover, efficiency of the extraction steps in collagen sample preparation for radiocarbon dating (acid and alkali treatments, filtration steps) could be evaluated for four different protocols on the basis of organic contaminant removal. Radiocarbon dating of the extracted collagen of four of the tested protocols corroborated the results of the Py GC × GC/MS data. This approach opens new perspectives for the use of comprehensive gas chromatography in the domain of archaeological sciences.


Subject(s)
Collagen/analysis , Gas Chromatography-Mass Spectrometry/methods , Pyrroles/chemistry , Animals , Archaeology , Bone and Bones/metabolism , Collagen/chemistry , Hydrocarbons/chemistry , Radiometric Dating , Sheep
3.
Sci Rep ; 7(1): 7141, 2017 08 02.
Article in English | MEDLINE | ID: mdl-28769125

ABSTRACT

Because hard tissues can be radiocarbon dated, they are key to establishing the archaeological chronologies, palaeoenvironmental reconstructions and historical-biogeographical processes of the last 50,000 years. The advent of accelerator mass spectrometers (AMS) has revolutionized the field of archaeology but routine AMS dating still requires 60-200 mg of bone, which far exceeds that of small vertebrates or remains which hold a patrimonial value (e.g. hominid remains or worked bone artefacts). Here, we present the first radiocarbon dates obtained from minute amounts of bone (3-60 mg) using a MIni CArbon DAting System (MICADAS). An optimized protocol allowed us to extract enough material to produce between 0.2 and 1.0 mg of carbon for graphite targets. Our approach was tested on known-age samples dating back to 40,000 BP, and served as proof of concept. The method was then applied to two archaeological sites where reliable dates were obtained from the single bones of small mammals. These results open the way for the routine dating of small or key bone samples.

SELECTION OF CITATIONS
SEARCH DETAIL
...