Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
Proc Natl Acad Sci U S A ; 120(34): e2309043120, 2023 08 22.
Article in English | MEDLINE | ID: mdl-37590416

ABSTRACT

Toxoplasma gondii is responsible for toxoplasmosis, a disease that can be serious when contracted during pregnancy, but can also be a threat for immunocompromised individuals. Acute infection is associated with the tachyzoite form that spreads rapidly within the host. However, under stress conditions, some parasites can differentiate into cyst-forming bradyzoites, residing mainly in the central nervous system, retina and muscle. Because this latent form of the parasite is resistant to all currently available treatments, and is central to persistence and transmission of the parasite, specific therapeutic strategies targeting this developmental stage need to be found. T. gondii contains a plastid of endosymbiotic origin called the apicoplast, which is an appealing drug target because it is essential for tachyzoite viability and contains several key metabolic pathways that are largely absent from the mammalian host. Its function in bradyzoites, however, is unknown. Our objective was thus to study the contribution of the apicoplast to the viability and persistence of bradyzoites during chronic toxoplasmosis. We have used complementary strategies based on stage-specific promoters to generate conditional bradyzoite mutants of essential apicoplast genes. Our results show that specifically targeting the apicoplast in both in vitro or in vivo-differentiated bradyzoites leads to a loss of long-term bradyzoite viability, highlighting the importance of this organelle for this developmental stage. This validates the apicoplast as a potential area to look for therapeutic targets in bradyzoites, with the aim to interfere with this currently incurable parasite stage.


Subject(s)
Apicoplasts , Cysts , Toxoplasma , Toxoplasmosis , Animals , Female , Pregnancy , Humans , Toxoplasma/genetics , Central Nervous System , Mammals
2.
J Biol Chem ; 298(8): 102243, 2022 08.
Article in English | MEDLINE | ID: mdl-35810787

ABSTRACT

Like many other apicomplexan parasites, Toxoplasma gondii contains a plastid harboring key metabolic pathways, including the sulfur utilization factor (SUF) pathway that is involved in the biosynthesis of iron-sulfur clusters. These cofactors are crucial for a variety of proteins involved in important metabolic reactions, potentially including plastidic pathways for the synthesis of isoprenoid and fatty acids. It was shown previously that impairing the NFS2 cysteine desulfurase, involved in the first step of the SUF pathway, leads to an irreversible killing of intracellular parasites. However, the metabolic impact of disrupting the pathway remained unexplored. Here, we generated another mutant of this pathway, deficient in the SUFC ATPase, and investigated in details the phenotypic consequences of TgNFS2 and TgSUFC depletion on the parasites. Our analysis confirms that Toxoplasma SUF mutants are severely and irreversibly impacted in division and membrane homeostasis, and suggests a defect in apicoplast-generated fatty acids. However, we show that increased scavenging from the host or supplementation with exogenous fatty acids do not fully restore parasite growth, suggesting that this is not the primary cause for the demise of the parasites and that other important cellular functions were affected. For instance, we also show that the SUF pathway is key for generating the isoprenoid-derived precursors necessary for the proper targeting of GPI-anchored proteins and for parasite motility. Thus, we conclude plastid-generated iron-sulfur clusters support the functions of proteins involved in several vital downstream cellular pathways, which implies the SUF machinery may be explored for new potential anti-Toxoplasma targets.


Subject(s)
Apicoplasts , Iron-Sulfur Proteins , Protozoan Proteins , Toxoplasma , Apicoplasts/genetics , Apicoplasts/metabolism , Fatty Acids/metabolism , Iron-Sulfur Proteins/genetics , Iron-Sulfur Proteins/metabolism , Plastids/genetics , Protozoan Proteins/genetics , Protozoan Proteins/metabolism , Terpenes/metabolism , Toxoplasma/genetics , Toxoplasma/metabolism
3.
Mol Plant Pathol ; 23(2): 159-174, 2022 02.
Article in English | MEDLINE | ID: mdl-34837293

ABSTRACT

Xanthomonas campestris pv. campestris (Xcc) is a seed-transmitted vascular pathogen causing black rot disease on cultivated and wild Brassicaceae. Xcc enters the plant tissues preferentially via hydathodes, which are organs localized at leaf margins. To decipher both physiological and virulence strategies deployed by Xcc during early stages of infection, the transcriptomic profile of Xcc was analysed 3 days after entry into cauliflower hydathodes. Despite the absence of visible plant tissue alterations and despite a biotrophic lifestyle, 18% of Xcc genes were differentially expressed, including a striking repression of chemotaxis and motility functions. The Xcc full repertoire of virulence factors had not yet been activated but the expression of the HrpG regulon composed of 95 genes, including genes coding for the type III secretion machinery important for suppression of plant immunity, was induced. The expression of genes involved in metabolic adaptations such as catabolism of plant compounds, transport functions, sulphur and phosphate metabolism was upregulated while limited stress responses were observed 3 days postinfection. We confirmed experimentally that high-affinity phosphate transport is needed for bacterial fitness inside hydathodes. This analysis provides information about the nutritional and stress status of bacteria during the early biotrophic infection stages and helps to decipher the adaptive strategy of Xcc to the hydathode environment.


Subject(s)
Brassica , Xanthomonas campestris , Xanthomonas , Adaptation, Physiological/genetics , Bacterial Proteins/metabolism , Brassica/genetics , Gene Expression Regulation, Bacterial , Plant Diseases/genetics , Transcriptome/genetics , Virulence/genetics , Xanthomonas/metabolism , Xanthomonas campestris/genetics
4.
PLoS Pathog ; 17(11): e1010096, 2021 11.
Article in English | MEDLINE | ID: mdl-34793583

ABSTRACT

Iron-sulfur (Fe-S) clusters are one of the most ancient and ubiquitous prosthetic groups, and they are required by a variety of proteins involved in important metabolic processes. Apicomplexan parasites have inherited different plastidic and mitochondrial Fe-S clusters biosynthesis pathways through endosymbiosis. We have investigated the relative contributions of these pathways to the fitness of Toxoplasma gondii, an apicomplexan parasite causing disease in humans, by generating specific mutants. Phenotypic analysis and quantitative proteomics allowed us to highlight notable differences in these mutants. Both Fe-S cluster synthesis pathways are necessary for optimal parasite growth in vitro, but their disruption leads to markedly different fates: impairment of the plastidic pathway leads to a loss of the organelle and to parasite death, while disruption of the mitochondrial pathway trigger differentiation into a stress resistance stage. This highlights that otherwise similar biochemical pathways hosted by different sub-cellular compartments can have very different contributions to the biology of the parasites, which is something to consider when exploring novel strategies for therapeutic intervention.


Subject(s)
Iron-Sulfur Proteins/metabolism , Mitochondria/parasitology , Plastids/parasitology , Protozoan Proteins/metabolism , Symbiosis , Toxoplasma/growth & development , Toxoplasmosis/parasitology , Humans , Iron-Sulfur Proteins/genetics , Mitochondria/metabolism , Plastids/metabolism , Proteome/analysis , Proteome/metabolism , Protozoan Proteins/genetics , Toxoplasma/metabolism , Toxoplasmosis/genetics , Toxoplasmosis/metabolism
5.
Elife ; 102021 04 27.
Article in English | MEDLINE | ID: mdl-33904393

ABSTRACT

Many of the world's warm-blooded species are chronically infected with Toxoplasma gondii tissue cysts, including an estimated one-third of the global human population. The cellular processes that permit long-term persistence within the cyst are largely unknown for T. gondii and related coccidian parasites that impact human and animal health. Herein, we show that genetic ablation of TgATG9 substantially reduces canonical autophagy and compromises bradyzoite viability. Transmission electron microscopy revealed numerous structural abnormalities occurring in ∆atg9 bradyzoites. Intriguingly, abnormal mitochondrial networks were observed in TgATG9-deficient bradyzoites, some of which contained numerous different cytoplasmic components and organelles. ∆atg9 bradyzoite fitness was drastically compromised in vitro and in mice, with very few brain cysts identified in mice 5 weeks post-infection. Taken together, our data suggests that TgATG9, and by extension autophagy, is critical for cellular homeostasis in bradyzoites and is necessary for long-term persistence within the cyst of this coccidian parasite.


Subject(s)
Autophagy , Brain/parasitology , Membrane Proteins/metabolism , Protozoan Proteins/metabolism , Toxoplasma/metabolism , Toxoplasmosis, Cerebral/parasitology , Animals , Brain/pathology , Cell Line , Disease Models, Animal , Female , Host-Parasite Interactions , Humans , Life Cycle Stages , Membrane Proteins/genetics , Membrane Proteins/ultrastructure , Mice, Inbred CBA , Mitochondria/genetics , Mitochondria/metabolism , Mitochondria/ultrastructure , Protozoan Proteins/genetics , Protozoan Proteins/ultrastructure , Time Factors , Toxoplasma/genetics , Toxoplasma/pathogenicity , Toxoplasma/ultrastructure , Toxoplasmosis, Cerebral/pathology , Vacuoles/genetics , Vacuoles/metabolism , Vacuoles/ultrastructure , Virulence
6.
Sci Adv ; 6(46)2020 11.
Article in English | MEDLINE | ID: mdl-33188025

ABSTRACT

Vascular plant pathogens travel long distances through host veins, leading to life-threatening, systemic infections. In contrast, nonvascular pathogens remain restricted to infection sites, triggering localized symptom development. The contrasting features of vascular and nonvascular diseases suggest distinct etiologies, but the basis for each remains unclear. Here, we show that the hydrolase CbsA acts as a phenotypic switch between vascular and nonvascular plant pathogenesis. cbsA was enriched in genomes of vascular phytopathogenic bacteria in the family Xanthomonadaceae and absent in most nonvascular species. CbsA expression allowed nonvascular Xanthomonas to cause vascular blight, while cbsA mutagenesis resulted in reduction of vascular or enhanced nonvascular symptom development. Phylogenetic hypothesis testing further revealed that cbsA was lost in multiple nonvascular lineages and more recently gained by some vascular subgroups, suggesting that vascular pathogenesis is ancestral. Our results overall demonstrate how the gain and loss of single loci can facilitate the evolution of complex ecological traits.


Subject(s)
Xanthomonas , Bacteria , Hydrolases , Phylogeny , Plants/genetics , Xanthomonas/genetics
7.
PLoS One ; 15(9): e0232566, 2020.
Article in English | MEDLINE | ID: mdl-32941421

ABSTRACT

Hydathode is a plant organ responsible for guttation in vascular plants, i.e. the release of droplets at leaf margin or surface. Because this organ connects the plant vasculature to the external environment, it is also a known entry site for several vascular pathogens. In this study, we present a detailed microscopic examination of leaf apical hydathodes in monocots for three crops (maize, rice and sugarcane) and the model plant Brachypodium distachyon. Our study highlights both similarities and specificities of those epithemal hydathodes. These observations will serve as a foundation for future studies on the physiology and the immunity of hydathodes in monocots.


Subject(s)
Brachypodium/ultrastructure , Crops, Agricultural/ultrastructure , Oryza/ultrastructure , Plant Leaves/ultrastructure , Saccharum/ultrastructure , Zea mays/ultrastructure
8.
Pathogens ; 9(3)2020 Mar 21.
Article in English | MEDLINE | ID: mdl-32245165

ABSTRACT

Toxoplasma gondii is a ubiquitous parasitic protist found in a wide variety of hosts, including a large proportion of the human population. Beyond an acute phase which is generally self-limited in immunocompetent individuals, the ability of the parasite to persist as a dormant stage, called bradyzoite, is an important aspect of toxoplasmosis. Not only is this stage not eliminated by current treatments, but it can also reactivate in immunocompromised hosts, leading to a potentially fatal outcome. Yet, despite its critical role in the pathology, the bradyzoite stage is relatively understudied. One main explanation is that it is a considerably challenging model, which essentially has to be derived from in vivo sources. However, recent progress on genetic manipulation and in vitro differentiation models now offers interesting perspectives for tackling key biological questions related to this particularly important developmental stage.

9.
Annu Rev Phytopathol ; 57: 91-116, 2019 08 25.
Article in English | MEDLINE | ID: mdl-31100996

ABSTRACT

Hydathodes are organs found on aerial parts of a wide range of plant species that provide almost direct access for several pathogenic microbes to the plant vascular system. Hydathodes are better known as the site of guttation, which is the release of droplets of plant apoplastic fluid to the outer leaf surface. Because these organs are only described through sporadic allusions in the literature, this review aims to provide a comprehensive view of hydathode development, physiology, and immunity by compiling a historic and contemporary bibliography. In particular, we refine the definition of hydathodes.We illustrate their important roles in the maintenance of plant osmotic balance, nutrient retrieval, and exclusion of deleterious chemicals from the xylem sap. Finally, we present our current understanding of the infection of hydathodes by adapted vascular pathogens and the associated plant immune responses.


Subject(s)
Plant Leaves , Xylem
10.
New Phytol ; 219(1): 391-407, 2018 07.
Article in English | MEDLINE | ID: mdl-29677397

ABSTRACT

Xanthomonas transcription activator-like effectors (TALEs) are injected inside plant cells to promote host susceptibility by enhancing transcription of host susceptibility genes. TALE-encoding (tal) genes were thought to be absent from Brassicaceae-infecting Xanthomonas campestris (Xc) genomes based on four reference genomic sequences. We discovered tal genes in 26 of 49 Xc strains isolated worldwide and used a combination of single molecule real time (SMRT) and tal amplicon sequencing to yield a near-complete description of the TALEs found in Xc (Xc TALome). The 53 sequenced tal genes encode 21 distinct DNA binding domains that sort into seven major DNA binding specificities. In silico analysis of the Brassica rapa promoterome identified a repertoire of predicted TALE targets, five of which were experimentally validated using quantitative reverse transcription polymerase chain reaction. The Xc TALome shows multiple signs of DNA rearrangements that probably drove its evolution from two ancestral tal genes. We discovered that Tal12a and Tal15a of Xcc strain Xca5 contribute together in the development of disease symptoms on susceptible B. oleracea var. botrytis cv Clovis. This large and polymorphic repertoire of TALEs opens novel perspectives for elucidating TALE-mediated susceptibility of Brassicaceae to black rot disease and for understanding the molecular processes underlying TALE evolution.


Subject(s)
Host-Pathogen Interactions/genetics , Transcription Activator-Like Effectors/genetics , Xanthomonas campestris/genetics , Xanthomonas campestris/pathogenicity , Brassica/microbiology , Genome, Bacterial , Phylogeny , Plant Diseases/microbiology
11.
Plant Physiol ; 174(2): 700-716, 2017 Jun.
Article in English | MEDLINE | ID: mdl-28184011

ABSTRACT

Hydathodes are water pores found on leaves of a wide range of vascular plants and are the sites of guttation. We report here on the detailed anatomy of cauliflower (Brassicaoleracea) and Arabidopsis (Arabidopsis thaliana) hydathodes. Hydathode surface presents pores resembling stomata giving access to large cavities. Beneath, the epithem is composed of a lacunar and highly vascularized parenchyma offering a direct connection between leaf surface and xylem vessels. Arabidopsis hydathode pores were responsive to ABA and light similar to stomata. The flg22 flagellin peptide, a well-characterized elicitor of plant basal immunity, did not induce closure of hydathode pores in contrast to stomata. Because hydathodes are natural infection routes for several pathogens, we investigated hydathode infection by the adapted vascular phytopathogenic bacterium Xanthomonas campestris pv campestris (Xcc), the causal agent of black rot disease of Brassicaceae. Microscopic observations of hydathodes six days postinoculation indicated a digestion of the epithem cells and a high bacterial multiplication. Postinvasive immunity was shown to limit pathogen growth in the epithem and is actively suppressed by the type III secretion system and its effector proteins. Altogether, these results give a detailed anatomic description of Brassicaceae hydathodes and highlight the efficient use of this tissue as an initial niche for subsequent vascular systemic dissemination of Xcc in distant plant tissues.


Subject(s)
Brassica/anatomy & histology , Brassica/immunology , Plant Diseases/immunology , Xanthomonas campestris/pathogenicity , Abscisic Acid/pharmacology , Arabidopsis/anatomy & histology , Arabidopsis/drug effects , Arabidopsis/immunology , Arabidopsis/microbiology , Brassica/microbiology , Host-Pathogen Interactions , Plant Leaves/microbiology , Plant Stomata/anatomy & histology , Plants, Genetically Modified , Xanthomonas campestris/genetics
12.
Bio Protoc ; 7(20): e2451, 2017 Oct 20.
Article in English | MEDLINE | ID: mdl-34595256

ABSTRACT

The present protocol to visualize living bacteria at the pore level of cauliflower hydathodes is simple and trained users in confocal microscopy can execute it successfully. It can be easily adapted to capture images with other plant-microorganism interactions at the leaf surface and should be useful to obtain important information on pore and stomatal biology. A critical limitation to methods used to observe plant-microorganism interactions in the pore is the application of too much pressure to the sample during observations and z-stack acquisitions. To solve this issue, we recommend the use of a long working-distance water immersion objective lens that allows observations even with thick samples.

13.
Bio Protoc ; 7(20): e2452, 2017 Oct 20.
Article in English | MEDLINE | ID: mdl-34595257

ABSTRACT

Hydathodes are plant organs present on leaf margins of a wide range of vascular plants and are the sites of guttation. Both anatomy and physiology of hydathodes are poorly documented. We have recently reported on the anatomy of cauliflower and Arabidopsis thaliana hydathodes and on their infection by the vascular pathogenic bacterium Xanthomonas campestris pv. campestris (Xcc) ( Cerutti et al., 2017 ). Because hydathodes are natural infection routes for several pathogens, it is necessary to have a deep knowledge of their anatomy to further better interpret images of infected hydathodes. Here, we described different detailed protocols for gaining information on hydathode anatomy which are applicable to a wide range of plants (including monocots like barley and rice). Nomarsky and confocal microscopy were used to observe clarified thick samples. Optical microscopy in transmitted light and transmission electron microscopy were used to observed thin and ultrathin sections.

14.
Genome Announc ; 3(5)2015 Sep 17.
Article in English | MEDLINE | ID: mdl-26383661

ABSTRACT

Xanthomonas campestris pv. campestris is the causal agent of black rot on Brassicaceae. The draft genome sequences of strains CFBP 1869 and CFBP 5817 have been determined and are the first ones corresponding to race 1 and race 4 strains, which have a predominant agronomic and economic impact on cabbage cultures worldwide.

SELECTION OF CITATIONS
SEARCH DETAIL
...