Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Chemosphere ; 208: 749-756, 2018 Oct.
Article in English | MEDLINE | ID: mdl-29902759

ABSTRACT

Metals and pesticides are common pollutants and the modulation of biomarkers can indicate sub-lethal influences on the physiology of organisms inhabiting impacted aquatic systems. We examined the effects of mercury and the organophosphate pesticide dimethoate on EROD, MROD, glutathione S-transferase (GST), acetylcholine esterase (AChE), metallothionein (MT) and glutathione (GSH) in the signal crayfish (Pacifastacus leniusculus). Crayfish were injected with mercury chloride or dimethoate (0.3, 0.6, 0.9 µg kg-1) and dissected after 72 h. EROD activity in the hepatopancreas did not change in response to mercury chloride treatment but exhibited a dose dependent decrease at all concentrations of dimethoate tested. MROD (hepatopancreas) exhibited a significant decrease at the 0.9 µg kg-1 treatment for both chemicals. GST (hepatopancreas) demonstrated a significant dose dependent decrease at all concentrations of both mercury chloride and dimethoate. AChE (tail muscle) decreased at the 0.6 and 0.9 µg kg-1 concentrations of dimethoate and 0.9 µg kg-1 mercury chloride. In gill tissue, MT increased in response to 0.3 and 0.6 µg kg-1 of mercury chloride but no effect was observed at the 0.9 µg kg-1 concentration of mercury chloride or any concentrations of dimethoate tested. MT did not change in response to mercury or dimethoate in tail tissue. Furthermore, neither chemical modulated GSH concentrations. Our results indicate that, apart from GSH, these markers are sensitive to the pollutants tested and that animals exposed in the wild are potentially compromised in their ability to detoxify environmental contaminants and carry out normal cellular processes.


Subject(s)
Astacoidea/enzymology , Dimethoate/toxicity , Mercury/toxicity , Acetylcholinesterase/drug effects , Animals , Astacoidea/drug effects , Gills , Glutathione/drug effects , Glutathione Transferase/drug effects , Hepatopancreas/drug effects , Insecticides/pharmacology , Mercury/pharmacology , Metallothionein/drug effects , Tissue Distribution
2.
Mol Microbiol ; 101(4): 625-44, 2016 08.
Article in English | MEDLINE | ID: mdl-27146086

ABSTRACT

More than 180 individual phages infecting hosts in the phylum Actinobacteria have been sequenced and grouped into Cluster A because of their similar overall nucleotide sequences and genome architectures. These Cluster A phages are either temperate or derivatives of temperate parents, and most have an integration cassette near the centre of the genome containing an integrase gene and attP. However, about 20% of the phages lack an integration cassette, which is replaced by a 1.4 kbp segment with predicted partitioning functions, including plasmid-like parA and parB genes. Phage RedRock forms stable lysogens in Mycobacterium smegmatis in which the prophage replicates at 2.4 copies/chromosome and the partitioning system confers prophage maintenance. The parAB genes are expressed upon RedRock infection of M. smegmatis, but are downregulated once lysogeny is established by binding of RedRock ParB to parS-L, one of two centromere-like sites flanking the parAB genes. The RedRock parS-L and parS-R sites are composed of eight directly repeated copies of an 8 bp motif that is recognized by ParB. The actinobacteriophage parABS cassettes span considerable sequence diversity and specificity, providing a suite of tools for use in mycobacterial genetics.


Subject(s)
Actinobacteria/virology , Bacteriophages/genetics , Bacterial Proteins/metabolism , Bacteriophages/metabolism , Base Sequence/genetics , Base Sequence/physiology , Centromere/metabolism , Chromosome Segregation/genetics , Chromosomes, Bacterial , Lysogeny , Mutagenesis, Insertional , Plasmids/genetics , Sequence Analysis, DNA
SELECTION OF CITATIONS
SEARCH DETAIL
...