Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Publication year range
1.
Molecules ; 28(20)2023 Oct 12.
Article in English | MEDLINE | ID: mdl-37894532

ABSTRACT

Among all cancers, lung cancer is the one with the highest mortality rate, and it also has limited therapeutics. Antitumor agents based on medicinal plants have gained importance as a source of bioactive substances. Tagetes erecta is a plant of great cultural value, and recent reports have suggested its cytotoxic effects in tumor cells. Our objective was to evaluate the antitumor activity of Tagetes erecta extract in a lung carcinoma model. Hydroalcoholic extracts were obtained from fresh flowers and leaves of T. erecta; both extracts did not exert toxicity on Artemia salina. We observed cytotoxic effects induced by the floral extract in Lewis lung carcinoma (LLC) and breast tumor cell line (MCF7), but not by the leaf extract. In vivo, a xenograft lung carcinoma model was performed with LLC cells implanted on C57BL/6 mice, which showed that the floral extract reduced tumor growth and improved the effect of etoposide. Microscopic analysis of tumors showed a reduction in mitoses and an increase in necrotic areas with the extract and the etoposide. The main phytochemical compounds found are 2,3-dihydro-benzofuran, octadecanoic acid, benzenacetic acid, oleic acid, linoleic acid, and acetic acid. We conclude that the hydroalcoholic extract of T. erecta flowers has cytotoxic effects in lung carcinoma cells and enhances the effect of etoposide.


Subject(s)
Antineoplastic Agents , Carcinoma , Lung Neoplasms , Tagetes , Humans , Animals , Mice , Tagetes/chemistry , Lung Neoplasms/drug therapy , Plant Extracts/pharmacology , Plant Extracts/chemistry , Etoposide , Mice, Inbred C57BL , Antineoplastic Agents/pharmacology , Lung
2.
Molecules ; 28(16)2023 Aug 11.
Article in English | MEDLINE | ID: mdl-37630269

ABSTRACT

Structure-activity relationship (SAR) studies allow the evaluation of the relationship between structural chemical changes and biological activity. Fluoroquinolones have chemical characteristics that allow their structure to be modified and new analogs with different therapeutic properties to be generated. The objective of this research is to identify and select the C-7 heterocycle fluoroquinolone analog (FQH 1-5) with antibacterial activity similar to the reference fluoroquinolone through in vitro, in silico, and in vivo evaluations. First, SAR analysis was conducted on the FQH 1-5, using an in vitro antimicrobial sensibility model in order to select the best compound. Then, an in silico model mechanism of action analysis was carried out by molecular docking. The non-bacterial cell cytotoxicity was evaluated, and finally, the antimicrobial potential was determined by an in vivo model of topical infection in mice. The results showed antimicrobial differences between the FQH 1-5 and Gram-positive and Gram-negative bacteria, identifying the 7-benzimidazol-1-yl-fluoroquinolone (FQH-2) as the most active against S. aureus. Suggesting the same mechanism of action as the other fluoroquinolones; no cytotoxic effects on non-bacterial cells were found. FQH-2 was demonstrated to decrease the amount of bacteria in infected wound tissue.


Subject(s)
Anti-Bacterial Agents , Anti-Infective Agents , Animals , Mice , Anti-Bacterial Agents/pharmacology , Fluoroquinolones/pharmacology , Molecular Docking Simulation , Staphylococcus aureus , Gram-Negative Bacteria , Gram-Positive Bacteria , Structure-Activity Relationship
3.
Signal Transduct Target Ther ; 5(1): 99, 2020 06 18.
Article in English | MEDLINE | ID: mdl-32555170

ABSTRACT

Normal cells are hijacked by cancer cells forming together heterogeneous tumor masses immersed in aberrant communication circuits that facilitate tumor growth and dissemination. Besides the well characterized angiogenic effect of some tumor-derived factors; others, such as BDNF, recruit peripheral nerves and leukocytes. The neurogenic switch, activated by tumor-derived neurotrophins and extracellular vesicles, attracts adjacent peripheral fibers (autonomic/sensorial) and neural progenitor cells. Strikingly, tumor-associated nerve fibers can guide cancer cell dissemination. Moreover, IL-1ß, CCL2, PGE2, among other chemotactic factors, attract natural immunosuppressive cells, including T regulatory (Tregs), myeloid-derived suppressor cells (MDSCs), and M2 macrophages, to the tumor microenvironment. These leukocytes further exacerbate the aberrant communication circuit releasing factors with neurogenic effect. Furthermore, cancer cells directly evade immune surveillance and the antitumoral actions of natural killer cells by activating immunosuppressive mechanisms elicited by heterophilic complexes, joining cancer and immune cells, formed by PD-L1/PD1 and CD80/CTLA-4 plasma membrane proteins. Altogether, nervous and immune cells, together with fibroblasts, endothelial, and bone-marrow-derived cells, promote tumor growth and enhance the metastatic properties of cancer cells. Inspired by the demonstrated, but restricted, power of anti-angiogenic and immune cell-based therapies, preclinical studies are focusing on strategies aimed to inhibit tumor-induced neurogenesis. Here we discuss the potential of anti-neurogenesis and, considering the interplay between nervous and immune systems, we also focus on anti-immunosuppression-based therapies. Small molecules, antibodies and immune cells are being considered as therapeutic agents, aimed to prevent cancer cell communication with neurons and leukocytes, targeting chemotactic and neurotransmitter signaling pathways linked to perineural invasion and metastasis.


Subject(s)
Molecular Targeted Therapy , Neoplasms/genetics , Neurogenesis/genetics , Tumor Escape/genetics , Cell Communication/genetics , Humans , Killer Cells, Natural/immunology , Neoplasms/complications , Neoplasms/therapy , Tumor Escape/immunology
4.
Gac Med Mex ; 151(6): 757-63, 2015.
Article in Spanish | MEDLINE | ID: mdl-26581534

ABSTRACT

Hemoglobin S is an abnormal protein that induces morphological changes in erythrocyte in low-oxygen conditions. In Mexico, it is reported that up to 13.7% of the population with mutation in one allele are considered asymptomatic (sickle cell trait). The sickle cell trait and diabetes mellitus are conditions that occur together in more than one million patients worldwide. Both diseases possibly produce microvascular changes in retinopathy and acute chest syndrome. The aim of this study was to evaluate the induction of sickle cells in samples of diabetic patients with sickle cell trait to identify altered red cell parameters. We obtained samples of diabetic patients to determine hemoglobin A1c and S; furthermore, red blood cell biometrics data were analyzed. We found that older men with diabetes were susceptible to generate sickle cells and this correlated with reduced red blood cell count and an increase in media cell volume. In samples of women diabetes, there were no differences. We conclude that samples from patients with sickle cell trait and diabetes can cause sickle cells with high frequency in men, with lower red blood cells count and increased mean corpuscular volume as susceptibility parameters.


Subject(s)
Diabetes Mellitus, Type 2/blood , Glycated Hemoglobin/analysis , Hemoglobin, Sickle/analysis , Sickle Cell Trait/blood , Cell Size , Erythrocyte Count , Female , Humans , Male , Mexico , Sex Factors
5.
Gac Med Mex ; 150(5): 440-9, 2014.
Article in Spanish | MEDLINE | ID: mdl-25275846

ABSTRACT

Inflammation is a physiological process, which eliminates pathogens and induces repair of damaged tissue. This process is controlled by negative feedback mechanisms, but if the inflammation persists, it generates a deleterious autoimmune process or can to contribute with diseases such as obesity or cancer. The inflammation resolution involves mechanisms such as decrease of proliferation and maturation of immune cells, phagocytosis and apoptosis of immune cells, and decrease of proinflammatory mediators. Therefore, is relevant to study the physiological effects of specific receptors that participate in inflammation resolution and the design of specific agonists as conventional anti-inflammatory therapeutics, without dramatic collateral effects. In this review, we study some mechanisms associated with inflammation inhibition, particularly the transduction of receptors for ligands with anti-inflammatory effects and that are relevant for their potential therapeutic.


Subject(s)
Anti-Inflammatory Agents/pharmacology , Inflammation/physiopathology , Signal Transduction/physiology , Animals , Apoptosis/physiology , Drug Design , Humans , Inflammation/complications , Inflammation/drug therapy , Inflammation Mediators/metabolism , Phagocytosis/physiology
6.
Invest Clin ; 53(1): 71-83, 2012 Mar.
Article in Spanish | MEDLINE | ID: mdl-22524110

ABSTRACT

HIV (human immunodeficiency virus) infection is today a very important health issue worldwide, which demands new ways and strategies for its prevention and treatment. Several studies on the innate immunity against HIV infection have shown that antimicrobial peptides are associated with increased resistance to infection. In the present review, we briefly summarize the major characteristics of antimicrobial peptides from human and several species of plants, amphibians, insects and other animal species that have significant potential to be used as therapeutic or prophylactic agents. The mechanisms of infection inhibition and viral replication blockade are also described in the context of the biology of infection.


Subject(s)
Anti-HIV Agents/therapeutic use , Antimicrobial Cationic Peptides/therapeutic use , HIV Infections/drug therapy , Animals , Anti-HIV Agents/isolation & purification , Anti-HIV Agents/pharmacology , Antimicrobial Cationic Peptides/isolation & purification , Antimicrobial Cationic Peptides/pharmacology , Drug Discovery , Drug Evaluation, Preclinical , HIV/drug effects , Humans , Invertebrates/chemistry , Plants/chemistry , Species Specificity , Vertebrates/metabolism , Virus Replication/drug effects
7.
Invest. clín ; 53(1): 71-83, mar. 2012. ilus, tab
Article in Spanish | LILACS | ID: lil-664567

ABSTRACT

La infección por VIH (virus de la inmunodeficiencia humana) en la actualidad es un grave problema de salud pública a nivel mundial, que requiere de nuevas estrategias vacunales para detener su propagación así como para su efectivo tratamiento. Algunos estudios relacionados con la inmunidad innata en contra de VIH, han demostrado que los péptidos antimicrobianos (AMP´s) pueden generar resistencia a las infecciones virales. En la presente revisión, se describen a los péptidos antimicrobianos de humano y su actividad en contra de VIH así como péptidos de otras especies como plantas, anfibios, insectos y varias especies de animales que poseen un potencial terapéutico o profiláctico en la infección por VIH. Se describen brevemente algunos mecanismos mediante los cuales estos péptidos pueden bloquear la replicación e infección por el VIH.


HIV (human immunodeficiency virus) infection is today a very important health issue worldwide, which demands new ways and strategies for its prevention and treatment. Several studies on the innate immunity against HIV infection have shown that antimicrobial peptides are associated with increased resistance to infection. In the present review, we briefly summarize the major characteristics of antimicrobial peptides from human and several species of plants, amphibians, insects and other animal species that have significant potential to be used as therapeutic or prophylactic agents. The mechanisms of infection inhibition and viral replication blockade are also described in the context of the biology of infection.


Subject(s)
Animals , Humans , Anti-HIV Agents/therapeutic use , Antimicrobial Cationic Peptides/therapeutic use , HIV Infections/drug therapy , Anti-HIV Agents/isolation & purification , Anti-HIV Agents/pharmacology , Antimicrobial Cationic Peptides/isolation & purification , Antimicrobial Cationic Peptides/pharmacology , Drug Discovery , Drug Evaluation, Preclinical , HIV , Invertebrates/chemistry , Plants/chemistry , Species Specificity , Vertebrates/metabolism , Virus Replication/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...