Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
J Clin Transl Hepatol ; 11(2): 284-294, 2023 Apr 28.
Article in English | MEDLINE | ID: mdl-36643050

ABSTRACT

Background and Aims: Nonalcoholic fatty liver disease (NAFLD) includes a range of progressive disorders generated by excess lipid accumulation in the liver leading to hepatic steatosis and eventually fibrosis. We aimed to identify by high performance mass spectrometry-based proteomics the main signaling pathways and liver proteome changes induced by hypercholesterolemia in a rabbit atherosclerotic model that induced high accumulation of lipids in the liver. Methods: The effect of combined lipid-lowering drugs (statins and anti-PCSK9 monoclonal antibody) were used after the interruption of the hypercholesterolemic diet to identify also the potential mediators, such as alarmins, responsible for the irreversible NAFLD build up under the hyperlipidemic sustained stress. Results: Proteomic analysis revealed a number of proteins whose abundance was altered. They were components of metabolic pathways including fatty-acid degradation, glycolysis/gluconeogenesis, and nonalcoholic fatty liver disease. Mitochondrial dysfunction indicated alteration at the mitochondrial respiratory chain level and down-regulation of NADH: ubiquinone oxidoreductase. The expression of a majority of cytochromes (P4502E1, b5, and c) were up-regulated by lipid-lowering treatment. Long-term hyperlipidemic stress, even with a low-fat diet and lipid-lowering treatment, was accompanied by alarmin release (annexins, galectins, HSPs, HMGB1, S100 proteins, calreticulin, and fibronectin) that generated local inflammation and induced liver steatosis and aggressive fibrosis (by high abundance of galectin 3, fibronectin, and calreticulin). Conclusions: The novel findings of this study were related to the residual effects of hyperlipidemic stress with consistent, combined lipid-lowering treatment with statin and inhibitor of PCSK9.

2.
Int J Mol Sci ; 23(19)2022 Sep 22.
Article in English | MEDLINE | ID: mdl-36232476

ABSTRACT

Increased levels of low-density lipoproteins are the main risk factor in the initiation and progression of atherosclerosis. Although statin treatment can effectively lower these levels, there is still a residual risk of cardiovascular events. We hypothesize that a specific panel of stress-sensing molecules (alarmins) could indicate the persistence of silent atherosclerosis residual risk. New Zealand White rabbits were divided into: control group (C), a group that received a high-fat diet for twelve weeks (Au), and a treated hyperlipidemic group with a lipid diet for eight weeks followed by a standard diet and hypolipidemic treatment (atorvastatin and PCSK9 siRNA-inhibitor) for four weeks (Asi). Mass spectrometry experiments of left ventricle lysates were complemented by immunologic and genomic studies to corroborate the data. The hyperlipidemic diet determined a general alarmin up-regulation tendency over the C group. A significant spectral abundance increase was measured for specific heat shock proteins, S100 family members, HMGB1, and Annexin A1. The hypolipidemic treatment demonstrated a reversed regulation trend with non-significant spectral alteration over the C group for some of the identified alarmins. Our study highlights the discriminating potential of alarmins in hyperlipidemia or following hypolipidemic treatment. Data are available via ProteomeXchange with identifier PXD035692.


Subject(s)
Annexin A1 , Atherosclerosis , HMGB1 Protein , Hydroxymethylglutaryl-CoA Reductase Inhibitors , Alarmins , Animals , Atherosclerosis/metabolism , Atorvastatin , HMGB1 Protein/metabolism , Heat-Shock Proteins/metabolism , Hypolipidemic Agents/pharmacology , Hypolipidemic Agents/therapeutic use , Lipoproteins, LDL/metabolism , Proprotein Convertase 9/metabolism , RNA, Small Interfering , Rabbits
3.
Molecules ; 27(17)2022 Aug 26.
Article in English | MEDLINE | ID: mdl-36080270

ABSTRACT

Exosomes are small extracellular vesicles with a variable protein cargo in consonance with cell origin and pathophysiological conditions. Gestational diabetes mellitus (GDM) is characterized by different levels of chronic low-grade inflammation and vascular dysfunction; however, there are few data characterizing the serum exosomal protein cargo of GDM patients and associated signaling pathways. Eighteen pregnant women were enrolled in the study: 8 controls (CG) and 10 patients with GDM. Blood samples were collected from patients, for exosomes' concentration. Protein abundance alterations were demonstrated by relative mass spectrometric analysis and their association with clinical parameters in GDM patients was performed using Pearson's correlation analysis. The proteomics analysis revealed 78 significantly altered proteins when comparing GDM to CG, related to complement and coagulation cascades, platelet activation, prothrombotic factors and cholesterol metabolism. Down-regulation of Complement C3 (C3), Complement C5 (C5), C4-B (C4B), C4b-binding protein beta chain (C4BPB) and C4b-binding protein alpha chain (C4BPA), and up-regulation of C7, C9 and F12 were found in GDM. Our data indicated significant correlations between factors involved in the pathogenesis of GDM and clinical parameters that may improve the understanding of GDM pathophysiology. Data are available via ProteomeXchange with identifier PXD035673.


Subject(s)
Diabetes, Gestational , Exosomes , Blood Proteins/metabolism , Complement C4b-Binding Protein/metabolism , Complement System Proteins/metabolism , Exosomes/metabolism , Female , Humans , Lipid Metabolism , Pregnancy , Proteomics/methods
4.
Int J Mol Sci ; 23(9)2022 May 09.
Article in English | MEDLINE | ID: mdl-35563680

ABSTRACT

Prognosis after myocardial infarction (MI) varies greatly depending on the extent of damaged area and the management of biological processes during recovery. Reportedly, the inhibition of the pro-inflammatory S100A9 reduces myocardial damage after MI. We hypothesize that a S100A9 blockade induces changes of major signaling pathways implicated in post-MI healing. Mass spectrometry-based proteomics and gene analyses of infarcted mice left ventricle were performed. The S100A9 blocker (ABR-23890) was given for 3 days after coronary ligation. At 3 and 7 days post-MI, ventricle samples were analyzed versus control and Sham-operated mice. Blockade of S100A9 modulated the expressed proteins involved in five biological processes: leukocyte cell-cell adhesion, regulation of the muscle cell apoptotic process, regulation of the intrinsic apoptotic signaling pathway, sarcomere organization and cardiac muscle hypertrophy. The blocker induced regulation of 36 proteins interacting with or targeted by the cellular tumor antigen p53, prevented myocardial compensatory hypertrophy, and reduced cardiac markers of post-ischemic stress. The blockade effect was prominent at day 7 post-MI when the quantitative features of the ventricle proteome were closer to controls. Blockade of S100A9 restores key biological processes altered post-MI. These processes could be valuable new pharmacological targets for the treatment of ischemic heart. Mass spectrometry data are available via ProteomeXchange with identifier PXD033683.


Subject(s)
Myocardial Infarction , Proteome , Alarmins/metabolism , Animals , Calgranulin B/genetics , Calgranulin B/metabolism , Heart Ventricles/metabolism , Hypertrophy/metabolism , Mice , Myocardial Infarction/metabolism , Myocardium/metabolism , Proteome/metabolism , Signal Transduction , Ventricular Remodeling
5.
Sci Rep ; 12(1): 2814, 2022 02 18.
Article in English | MEDLINE | ID: mdl-35181730

ABSTRACT

Non-apoptotic regulated cell death (ferroptosis and necroptosis) leads to the release of damage-associated molecular patterns (DAMPs), which initiate and perpetuate a non-infectious inflammatory response. We hypothesize that DAMPs and non-apoptotic regulated cell death are critical players of atherosclerotic plaque progression with inadequate response to lipid-lowering treatment. We aimed to uncover the silent mechanisms that govern the existing residual risk of cardiovascular-related mortality in experimental atherosclerosis. Proteomic and genomic approaches were applied on the ascending aorta of hyperlipidemic rabbits and controls with and without lipid-lowering treatment. The hyperlipidemic animals, which presented numerous heterogeneous atherosclerotic lesions, exhibited high concentrations of serum lipids and increased lipid peroxidation oxidative stress markers. The analyses revealed the significant upregulation of DAMPs and proteins implicated in ferroptosis and necroptosis by hyperlipidemia. Some of them did not respond to lipid-lowering treatment. Dysregulation of five proteins involved in non-apoptotic regulated cell death proteins (VDAC1, VDAC3, FTL, TF and PCBP1) and nine associated DAMPs (HSP90AA1, HSP90AB1, ANXA1, LGALS3, HSP90B1, S100A11, FN, CALR, H3-3A) was not corrected by the treatment. These proteins could play a key role in the atherosclerotic silent evolution and may possess an unexplored therapeutic potential. Mass spectrometry data are available via ProteomeXchange with identifier PXD026379.


Subject(s)
Alarmins/genetics , Atherosclerosis/genetics , Lipids/blood , Plaque, Atherosclerotic/genetics , Alarmins/blood , Animals , Aorta/metabolism , Aorta/pathology , Apoptosis/genetics , Atherosclerosis/blood , Atherosclerosis/pathology , Diet, High-Fat/adverse effects , Disease Models, Animal , Disease Progression , Gene Expression Regulation/genetics , Humans , Lipid Peroxidation/genetics , Lipids/genetics , Mass Spectrometry , Oxidative Stress/genetics , Plaque, Atherosclerotic/blood , Plaque, Atherosclerotic/pathology , Proteome/metabolism , Rabbits
6.
J Cell Mol Med ; 24(20): 12131-12140, 2020 10.
Article in English | MEDLINE | ID: mdl-32935914

ABSTRACT

Nephropathy is a major chronic complication of diabetes. A crucial role in renal pathophysiology is played by hydrogen sulphide (H2 S) that is produced excessively by the kidney; however, the data regarding H2 S bioavailability are inconsistent. We hypothesize that early type 1 diabetes (T1D) increases H2 S production by a mechanism involving hyperglycaemia-induced alterations in sulphur metabolism. Plasma and kidney tissue collected from T1D double transgenic mice were subjected to mass spectrometry-based proteomic analysis, and the results were validated by immunological and gene expression assays.T1D mice exhibited a high concentration of H2 S in the plasma and kidney tissue and histological, showed signs of subtle kidney fibrosis, characteristic for early renal disease. The shotgun proteomic analyses disclosed that the level of enzymes implicated in sulphate activation modulators, H2 S-oxidation and H2 S-production were significantly affected (ie 6 up-regulated and 4 down-regulated). Gene expression results corroborated well with the proteomic data. Dysregulation of H2 S enzymes underly the changes occurring in H2 S production, which in turn could play a key role in the initiation of renal disease. The new findings lead to a novel target in the therapy of diabetic nephropathy. Mass spectrometry data are available via ProteomeXchange with identifier PXD018053.


Subject(s)
Diabetic Nephropathies/enzymology , Kidney/metabolism , Sulfur/metabolism , Animals , Diabetes Mellitus, Type 1/enzymology , Diabetes Mellitus, Type 1/pathology , Diabetic Nephropathies/pathology , Disease Models, Animal , Gene Expression Regulation , Hydrogen Sulfide/metabolism , Metabolic Networks and Pathways , Mice, Inbred BALB C , Mice, Transgenic , Proteomics , RNA, Messenger/genetics , RNA, Messenger/metabolism , Reproducibility of Results
SELECTION OF CITATIONS
SEARCH DETAIL
...