Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
PeerJ ; 7: e6533, 2019.
Article in English | MEDLINE | ID: mdl-30891367

ABSTRACT

Corvids count among the important predators of bird nests. They are vocal animals and one can expect that birds threatened by their predation, such as black grouse, are sensitive to and recognize their calls. Within the framework of field studies, we noticed that adult black grouse were alerted by raven calls during periods outside the breeding season. Since black grouse are large, extremely precocial birds, this reaction can hardly be explained by sensitization specifically to the threat of nest predation by ravens. This surprising observation prompted us to study the phenomenon more systematically. According to our knowledge, the response of birds to corvid vocalization has been studied in altricial birds only. We tested whether the black grouse distinguishes and responds specifically to playback calls of the common raven. Black grouse recognized raven calls and were alerted, displaying typical neck stretching, followed by head scanning, and eventual escape. Surprisingly, males tended to react faster and exhibited a longer duration of vigilance behavior compared to females. Although raven calls are recognized by adult black grouse out of the nesting period, they are not directly endangered by the raven. We speculate that the responsiveness of adult grouse to raven calls might be explained as a learned response in juveniles from nesting hens that is then preserved in adults, or by a known association between the raven and the red fox. In that case, calls of the raven would be rather interpreted as a warning signal of probable proximity of the red fox.

2.
Front Zool ; 10(1): 80, 2013 Dec 27.
Article in English | MEDLINE | ID: mdl-24370002

ABSTRACT

INTRODUCTION: Several mammalian species spontaneously align their body axis with respect to the Earth's magnetic field (MF) lines in diverse behavioral contexts. Magnetic alignment is a suitable paradigm to scan for the occurrence of magnetosensitivity across animal taxa with the heuristic potential to contribute to the understanding of the mechanism of magnetoreception and identify further functions of magnetosensation apart from navigation. With this in mind we searched for signs of magnetic alignment in dogs. We measured the direction of the body axis in 70 dogs of 37 breeds during defecation (1,893 observations) and urination (5,582 observations) over a two-year period. After complete sampling, we sorted the data according to the geomagnetic conditions prevailing during the respective sampling periods. Relative declination and intensity changes of the MF during the respective dog walks were calculated from daily magnetograms. Directional preferences of dogs under different MF conditions were analyzed and tested by means of circular statistics. RESULTS: Dogs preferred to excrete with the body being aligned along the North-South axis under calm MF conditions. This directional behavior was abolished under unstable MF. The best predictor of the behavioral switch was the rate of change in declination, i.e., polar orientation of the MF. CONCLUSIONS: It is for the first time that (a) magnetic sensitivity was proved in dogs, (b) a measurable, predictable behavioral reaction upon natural MF fluctuations could be unambiguously proven in a mammal, and (c) high sensitivity to small changes in polarity, rather than in intensity, of MF was identified as biologically meaningful. Our findings open new horizons in magnetoreception research. Since the MF is calm in only about 20% of the daylight period, our findings might provide an explanation why many magnetoreception experiments were hardly replicable and why directional values of records in diverse observations are frequently compromised by scatter.

3.
Front Zool ; 10(1): 38, 2013 Jul 08.
Article in English | MEDLINE | ID: mdl-23835450

ABSTRACT

INTRODUCTION: Landing flight in birds is demanding on visual control of velocity, distance to target, and slope of descent. Birds flying in flocks must also keep a common course of landing in order to avoid collisions. Whereas the wind direction may provide a cue for landing, the nature of the landing direction indicator under windless conditions has been unknown. We recorded and analysed landing directions of 3,338 flocks in 14 species of water birds in eight countries. RESULTS: We show that the preferred landing direction, independently of the direction from which the birds have arrived, is along the north-south axis. We analysed the effect of the time of the year, time of the day (and thus sun position), weather (sunny versus overcast), light breeze, locality, latitude, and magnetic declination in 2,431 flocks of mallards (Anas platyrhynchos) and found no systematic effect of these factors upon the preferred direction of landing. We found that magnetic North was a better predictor for landing direction than geographic North. CONCLUSIONS: In absence of any other common denominator determining the landing direction, the alignment with the magnetic field lines seems to be the most plausible if not the only explanation for the directional landing preference under windless and overcast conditions and we suggest that the magnetic field thus provides a landing direction indicator.

4.
Dalton Trans ; 42(14): 5174-82, 2013 Apr 14.
Article in English | MEDLINE | ID: mdl-23403772

ABSTRACT

Asymmetric transfer hydrogenation (ATH) of cyclic imines using [RuCl(η(6)-p-cymene)TsDPEN] (TsDPEN = N-tosyl-1,2-diphenylethylenediamine) was tested with various aliphatic (secondary, tertiary) and aromatic amines employed in the HCOOH-base hydrogen donor mixture. Significant differences in reaction rates and stereoselectivity were observed, which pointed to the fact that the role of the base in the overall mechanism could be more significant than generally accepted. The hydrogenation mixture was studied by nuclear magnetic resonance (NMR), Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) and vibrational circular dichroism (VCD) with infrared spectroscopy. The results suggested that the protonated base formed an associate with the active ruthenium-hydride species, most probably via a hydrogen bond with the sulfonyl group of the complex. It is assumed that the steric and electronic differences among the bases were responsible for the results of the initial ATH experiments.


Subject(s)
Coordination Complexes/chemistry , Imines/chemistry , Ruthenium/chemistry , Circular Dichroism , Coordination Complexes/chemical synthesis , Cymenes , Hydrogenation , Kinetics , Magnetic Resonance Spectroscopy , Mass Spectrometry , Monoterpenes/chemistry , Spectroscopy, Fourier Transform Infrared
5.
PLoS One ; 7(12): e51100, 2012.
Article in English | MEDLINE | ID: mdl-23227241

ABSTRACT

While magnetoreception in birds has been studied intensively, the literature on magnetoreception in bony fish, and particularly in non-migratory fish, is quite scarce. We examined alignment of common carps (Cyprinus carpio) at traditional Christmas sale in the Czech Republic. The sample comprised measurements of the directional bearings in 14,537 individual fish, distributed among 80 large circular plastic tubs, at 25 localities in the Czech Republic, during 817 sampling sessions, on seven subsequent days in December 2011. We found that carps displayed a statistically highly significant spontaneous preference to align their bodies along the North-South axis. In the absence of any other common orientation cues which could explain this directional preference, we attribute the alignment of the fish to the geomagnetic field lines. It is apparent that the display of magnetic alignment is a simple experimental paradigm of great heuristic potential.


Subject(s)
Carps/physiology , Commerce , Magnetic Phenomena , Animals , Czech Republic , Light , Orientation , Water
6.
Biol Lett ; 7(3): 355-7, 2011 Jun 23.
Article in English | MEDLINE | ID: mdl-21227977

ABSTRACT

Red foxes hunting small animals show a specific behaviour known as 'mousing'. The fox jumps high, so that it surprises its prey from above. Hearing seems to be the primary sense for precise prey location in high vegetation or under snow where it cannot be detected with visual cues. A fox preparing for the jump displays a high degree of auditory attention. Foxes on the prowl tend to direct their jumps in a roughly north-eastern compass direction. When foxes are hunting in high vegetation and under snow cover, successful attacks are tightly clustered to the north, while attacks in other directions are largely unsuccessful. The direction of attacks was independent of time of day, season of the year, cloud cover and wind direction. We suggest that this directional preference represents a case of magnetic alignment and enhances the precision of hunting attacks.


Subject(s)
Foxes/psychology , Predatory Behavior , Animals , Czech Republic , Ecosystem , Magnetics
7.
PLoS One ; 5(11): e13853, 2010 Nov 05.
Article in English | MEDLINE | ID: mdl-21079781

ABSTRACT

BACKGROUND: White-nose syndrome is a disease of hibernating insectivorous bats associated with the fungus Geomyces destructans. It first appeared in North America in 2006, where over a million bats died since then. In Europe, G. destructans was first identified in France in 2009. Its distribution, infection dynamics, and effects on hibernating bats in Europe are largely unknown. METHODOLOGY/PRINCIPAL FINDINGS: We screened hibernacula in the Czech Republic and Slovakia for the presence of the fungus during the winter seasons of 2008/2009 and 2009/2010. In winter 2009/2010, we found infected bats in 76 out of 98 surveyed sites, in which the majority had been previously negative. A photographic record of over 6000 hibernating bats, taken since 1994, revealed bats with fungal growths since 1995; however, the incidence of such bats increased in Myotis myotis from 2% in 2007 to 14% by 2010. Microscopic, cultivation and molecular genetic evaluations confirmed the identity of the recently sampled fungus as G. destructans, and demonstrated its continuous distribution in the studied area. At the end of the hibernation season we recorded pathologic changes in the skin of the affected bats, from which the fungus was isolated. We registered no mass mortality caused by the fungus, and the recorded population decline in the last two years of the most affected species, M. myotis, is within the population trend prediction interval. CONCLUSIONS/SIGNIFICANCE: G. destructans was found to be widespread in the Czech Republic and Slovakia, with an epizootic incidence in bats during the most recent years. Further development of the situation urgently requires a detailed pan-European monitoring scheme.


Subject(s)
Ascomycota/physiology , Chiroptera/microbiology , Dermatomycoses/microbiology , Animals , Ascomycota/classification , Ascomycota/genetics , Chiroptera/classification , Czech Republic/epidemiology , DNA, Fungal/chemistry , DNA, Fungal/genetics , DNA, Ribosomal/chemistry , DNA, Ribosomal/genetics , Dermatomycoses/epidemiology , Geography , Hibernation , Host-Pathogen Interactions , Incidence , Molecular Sequence Data , Seasons , Sequence Analysis, DNA , Slovakia/epidemiology , Species Specificity
8.
Proc Natl Acad Sci U S A ; 106(14): 5708-13, 2009 Apr 07.
Article in English | MEDLINE | ID: mdl-19299504

ABSTRACT

Resting and grazing cattle and deer tend to align their body axes in the geomagnetic North-South direction. The mechanism(s) that underlie this behavior remain unknown. Here, we show that extremely low-frequency magnetic fields (ELFMFs) generated by high-voltage power lines disrupt alignment of the bodies of these animals with the geomagnetic field. Body orientation of cattle and roe deer was random on pastures under or near power lines. Moreover, cattle exposed to various magnetic fields directly beneath or in the vicinity of power lines trending in various magnetic directions exhibited distinct patterns of alignment. The disturbing effect of the ELFMFs on body alignment diminished with the distance from conductors. These findings constitute evidence for magnetic sensation in large mammals as well as evidence of an overt behavioral reaction to weak ELFMFs in vertebrates. The demonstrated reaction to weak ELFMFs implies effects at the cellular and molecular levels.


Subject(s)
Behavior, Animal , Electromagnetic Fields , Ruminants/physiology , Animals , Physiological Phenomena
9.
Proc Natl Acad Sci U S A ; 105(36): 13451-5, 2008 Sep 09.
Article in English | MEDLINE | ID: mdl-18725629

ABSTRACT

We demonstrate by means of simple, noninvasive methods (analysis of satellite images, field observations, and measuring "deer beds" in snow) that domestic cattle (n = 8,510 in 308 pastures) across the globe, and grazing and resting red and roe deer (n = 2,974 at 241 localities), align their body axes in roughly a north-south direction. Direct observations of roe deer revealed that animals orient their heads northward when grazing or resting. Amazingly, this ubiquitous phenomenon does not seem to have been noticed by herdsmen, ranchers, or hunters. Because wind and light conditions could be excluded as a common denominator determining the body axis orientation, magnetic alignment is the most parsimonious explanation. To test the hypothesis that cattle orient their body axes along the field lines of the Earth's magnetic field, we analyzed the body orientation of cattle from localities with high magnetic declination. Here, magnetic north was a better predictor than geographic north. This study reveals the magnetic alignment in large mammals based on statistically sufficient sample sizes. Our findings open horizons for the study of magnetoreception in general and are of potential significance for applied ethology (husbandry, animal welfare). They challenge neuroscientists and biophysics to explain the proximate mechanisms.


Subject(s)
Cattle/physiology , Deer/physiology , Eating/physiology , Magnetics , Rest/physiology , Animals , Posture/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...