Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Brain Pathol ; : e13265, 2024 May 05.
Article in English | MEDLINE | ID: mdl-38705944

ABSTRACT

Gliomagenesis induces profound changes in the composition of the extracellular matrix (ECM) of the brain. In this study, we identified a cellular population responsible for the increased deposition of collagen I and fibronectin in glioblastoma. Elevated levels of the fibrillar proteins collagen I and fibronectin were associated with the expression of fibroblast activation protein (FAP), which is predominantly found in pericyte-like cells in glioblastoma. FAP+ pericyte-like cells were present in regions rich in collagen I and fibronectin in biopsy material and produced substantially more collagen I and fibronectin in vitro compared to other cell types found in the GBM microenvironment. Using mass spectrometry, we demonstrated that 3D matrices produced by FAP+ pericyte-like cells are rich in collagen I and fibronectin and contain several basement membrane proteins. This expression pattern differed markedly from glioma cells. Finally, we have shown that ECM produced by FAP+ pericyte-like cells enhances the migration of glioma cells including glioma stem-like cells, promotes their adhesion, and activates focal adhesion kinase (FAK) signaling. Taken together, our findings establish FAP+ pericyte-like cells as crucial producers of a complex ECM rich in collagen I and fibronectin, facilitating the dissemination of glioma cells through FAK activation.

2.
Sci Total Environ ; 870: 161973, 2023 Apr 20.
Article in English | MEDLINE | ID: mdl-36739013

ABSTRACT

Soil organic content (SOC), an indicator of soil fertility, can be estimated quickly and accurately with remote sensing (RS) datasets; however, the issue of vegetation cover on the field still remains a major concern. In order to minimize the effects of vegetation cover, studies relating reflectance spectra to SOC may require bare soil. However, acquiring satellite images devoid of vegetation is still an enormous challenge for RS techniques. This is because the area that may have been accurately predicted at a targeted date is sometimes limited since many pixels are covered by vegetation. The study goal was to assess the impact of using UAV-borne imagery coupled with auxiliary datasets, which include spectral indices (SPIs) and terrain attributes (TAs) (at 20 cm and 30 m resolution), singly or merged, to estimate and map SOC in an erosion-prone agricultural field. Both field samples and UAV imagery were acquired while the fields were bare. Using a grid sampling design, 133 soil surface samples were collected. The models used include partial least square regression (PLSR), extreme gradient boosting (EGB), multivariate adaptive regression splines (MARS), and regularised random forest (RFF). The models were evaluated using the root mean squared error (RMSE), the coefficient of determination (R2), ratio of performance to interquartile distance (RPIQ), and the mean absolute error (MAE). For prediction, the three merged datasets (R2val = 0.86, RMSEval = 0.13, MAEval = 0.11, RPIQval = 4.19) outperformed the best separate dataset (R2val = 0.82, RMSEval = 0.15, MAEval = 0.10, RPIQval = 2.08). Though all datasets detected both low and high estimates of soil SOC, the three merged datasets with EGB showed a less extreme prediction error. This study demonstrated that SOC can be estimated with high accuracy using completely bare soil UAV imagery with other auxiliary data, and it is thus highly recommended.

3.
Methods Mol Biol ; 2520: 335-360, 2022.
Article in English | MEDLINE | ID: mdl-35579839

ABSTRACT

The unique properties of stem cells to self-renew and differentiate hold great promise in disease modelling and regenerative medicine. However, more information about basic stem cell biology and thorough characterization of available stem cell lines is needed. This is especially essential to ensure safety before any possible clinical use of stem cells or partially committed cell lines. As proteins are the key effector molecules in the cell, the proteomic characterization of cell lines, cell compartments or cell secretome and microenvironment is highly beneficial to answer above mentioned questions. Nowadays, method of choice for large-scale discovery-based proteomic analysis is mass spectrometry (MS) with data-independent acquisition (DIA). DIA is a robust, highly reproducible, high-throughput quantitative MS approach that enables relative quantification of thousands of proteins in one sample. In the current protocol, we describe a specific variant of DIA known as SWATH-MS for characterization of neural stem cell differentiation. The protocol covers the whole process from cell culture, sample preparation for MS analysis, the SWATH-MS data acquisition on TTOF 5600, the complete SWATH-MS data processing and quality control using Skyline software and the basic statistical analysis in R and MSstats package. The protocol for SWATH-MS data acquisition and analysis can be easily adapted to other samples amenable to MS-based proteomics.


Subject(s)
Neural Stem Cells , Proteomics , Software , Cell Differentiation , Humans , Mass Spectrometry/methods , Neural Stem Cells/chemistry , Neural Stem Cells/metabolism , Proteome/analysis , Proteomics/methods , Quality Control
4.
Biol Open ; 10(8)2021 08 15.
Article in English | MEDLINE | ID: mdl-34357391

ABSTRACT

Human multipotent neural stem cells could effectively be used for the treatment of a variety of neurological disorders. However, a defining signature of neural stem cell lines that would be expandable, non-tumorigenic, and differentiate into desirable neuronal/glial phenotype after in vivo grafting is not yet defined. Employing a mass spectrometry approach, based on selected reaction monitoring, we tested a panel of well-described culture conditions, and measured levels of protein markers routinely used to probe neural differentiation, i.e. POU5F1 (OCT4), SOX2, NES, DCX, TUBB3, MAP2, S100B, GFAP, GALC, and OLIG1. Our multiplexed assay enabled us to simultaneously identify the presence of pluripotent, multipotent, and lineage-committed neural cells, thus representing a powerful tool to optimize novel and highly specific propagation and differentiation protocols. The multiplexing capacity of this method permits the addition of other newly identified cell type-specific markers to further increase the specificity and quantitative accuracy in detecting targeted cell populations. Such an expandable assay may gain the advantage over traditional antibody-based assays, and represents a method of choice for quality control of neural stem cell lines intended for clinical use.


Subject(s)
Cell Differentiation , Neural Stem Cells/cytology , Neural Stem Cells/metabolism , Biomarkers , Cell Line , Cell Lineage/genetics , Gene Expression Profiling , Gene Expression Regulation, Developmental , Humans , Immunohistochemistry , Mass Spectrometry , Neuroglia , Neurons
5.
Cells ; 10(1)2021 01 04.
Article in English | MEDLINE | ID: mdl-33406800

ABSTRACT

Specific nuclear sub-compartments that are regions of fundamental processes such as gene expression or DNA repair, contain phosphoinositides (PIPs). PIPs thus potentially represent signals for the localization of specific proteins into different nuclear functional domains. We performed limited proteolysis followed by label-free quantitative mass spectrometry and identified nuclear protein effectors of the most abundant PIP-phosphatidylinositol 4,5-bisphosphate (PIP2). We identified 515 proteins with PIP2-binding capacity of which 191 'exposed' proteins represent a direct PIP2 interactors and 324 'hidden' proteins, where PIP2 binding was increased upon trypsin treatment. Gene ontology analysis revealed that 'exposed' proteins are involved in the gene expression as regulators of Pol II, mRNA splicing, and cell cycle. They localize mainly to non-membrane bound organelles-nuclear speckles and nucleolus and are connected to the actin nucleoskeleton. 'Hidden' proteins are linked to the gene expression, RNA splicing and transport, cell cycle regulation, and response to heat or viral infection. These proteins localize to the nuclear envelope, nuclear pore complex, or chromatin. Bioinformatic analysis of peptides bound in both groups revealed that PIP2-binding motifs are in general hydrophilic. Our data provide an insight into the molecular mechanism of nuclear PIP2 protein interaction and advance the methodology applicable for further studies of PIPs or other protein ligands.


Subject(s)
Cell Nucleus/metabolism , Mass Spectrometry , Phosphatidylinositol 4,5-Diphosphate/metabolism , Proteolysis , Proteome/metabolism , Amino Acid Sequence , Gene Expression Regulation , Gene Ontology , HeLa Cells , Humans , Hydrophobic and Hydrophilic Interactions , Peptides/metabolism , Proteome/chemistry , Trypsin/metabolism
6.
PLoS One ; 15(4): e0229781, 2020.
Article in English | MEDLINE | ID: mdl-32343699

ABSTRACT

Lamin C2 (LMN C2) is a short product of the lamin a gene. It is a germ cell-specific lamin and has been extensively studied in male germ cells. In this study, we focussed on the expression and localization of LMN C2 in fully-grown germinal vesicle (GV) oocytes. We detected LMN C2 in the fully-grown germinal vesicle oocytes of various mammalian species with confirmation done by immunoblotting the wild type and Lmnc2 gene deleted testes. Expression of LMN C2 tagged with GFP showed localization of LMN C2 to the nuclear membrane of the oocyte. Moreover, the LMN C2 protein notably disappeared after nuclear envelope breakdown (NEBD) and the expression of LMN C2 was significantly reduced in the oocytes from aged females and ceased altogether during meiotic maturation. These results provide new insights regarding LMN C2 expression in the oocytes of various mammalian species.


Subject(s)
Laminin/genetics , Oocytes/growth & development , Oogenesis/genetics , Ovary/growth & development , Animals , Female , Gene Expression Regulation, Developmental/genetics , Germ Cells/growth & development , Male , Meiosis/genetics , Mice , Mice, Knockout , Nuclear Envelope/genetics , Oocytes/metabolism , RNA, Messenger/genetics , Spermatocytes/growth & development , Testis/growth & development
7.
Front Cell Neurosci ; 14: 612560, 2020.
Article in English | MEDLINE | ID: mdl-33584205

ABSTRACT

Cell therapies represent a promising approach to slow down the progression of currently untreatable neurodegenerative diseases (e.g., Alzheimer's and Parkinson's disease or amyotrophic lateral sclerosis), as well as to support the reconstruction of functional neural circuits after spinal cord injuries. In such therapies, the grafted cells could either functionally integrate into the damaged tissue, partially replacing dead or damaged cells, modulate inflammatory reaction, reduce tissue damage, or support neuronal survival by secretion of cytokines, growth, and trophic factors. Comprehensive characterization of cells and their proliferative potential, differentiation status, and population purity before transplantation is crucial to preventing safety risks, e.g., a tumorous growth due to the proliferation of undifferentiated stem cells. We characterized changes in the proteome and secretome of human neural stem cells (NSCs) during their spontaneous (EGF/FGF2 withdrawal) differentiation and differentiation with trophic support by BDNF/GDNF supplementation. We used LC-MS/MS in SWATH-MS mode for global cellular proteome profiling and quantified almost three thousand cellular proteins. Our analysis identified substantial protein differences in the early stages of NSC differentiation with more than a third of all the proteins regulated (including known neuronal and NSC multipotency markers) and revealed that the BDNF/GDNF support affected more the later stages of the NSC differentiation. Among the pathways identified as activated during both spontaneous and BDNF/GDNF differentiation were the HIF-1 signaling pathway, Wnt signaling pathway, and VEGF signaling pathway. Our follow-up secretome analysis using Luminex multiplex immunoassay revealed significant changes in the secretion of VEGF and IL-6 during NSC differentiation. Our results further demonstrated an increased expression of neuropilin-1 as well as catenin ß-1, both known to participate in the regulation of VEGF signaling, and showed that VEGF-A isoform 121 (VEGF121), in particular, induces proliferation and supports survival of differentiating cells.

8.
Int J Mol Sci ; 18(12)2017 Dec 13.
Article in English | MEDLINE | ID: mdl-29236046

ABSTRACT

Melanoma is a skin cancer with permanently increasing incidence and resistance to therapies in advanced stages. Reports of spontaneous regression and tumour infiltration with T-lymphocytes makes melanoma candidate for immunotherapies. Cytokines are key factors regulating immune response and intercellular communication in tumour microenvironment. Cytokines may be used in therapy of melanoma to modulate immune response. Cytokines also possess diagnostic and prognostic potential and cytokine production may reflect effects of immunotherapies. The purpose of this review is to give an overview of recent advances in proteomic techniques for the detection and quantification of cytokines in melanoma research. Approaches covered span from mass spectrometry to immunoassays for single molecule detection (ELISA, western blot), multiplex assays (chemiluminescent, bead-based (Luminex) and planar antibody arrays), ultrasensitive techniques (Singulex, Simoa, immuno-PCR, proximity ligation/extension assay, immunomagnetic reduction assay), to analyses of single cells producing cytokines (ELISpot, flow cytometry, mass cytometry and emerging techniques for single cell secretomics). Although this review is focused mainly on cancer and particularly melanoma, the discussed techniques are in general applicable to broad research field of biology and medicine, including stem cells, development, aging, immunology and intercellular communication.


Subject(s)
Cytokines/analysis , Melanoma/diagnosis , Skin Neoplasms/diagnosis , Humans , Immunoassay , Immunotherapy , Mass Spectrometry , Melanoma/metabolism , Melanoma/therapy , Protein Array Analysis , Proteomics , Skin Neoplasms/metabolism , Skin Neoplasms/therapy , Tumor Microenvironment
SELECTION OF CITATIONS
SEARCH DETAIL
...