Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 24
Filter
Add more filters










Publication year range
1.
J Alzheimers Dis ; 96(4): 1399-1409, 2023.
Article in English | MEDLINE | ID: mdl-38007649

ABSTRACT

There are several implications of the surge in the incidence of pandemics and epidemics in the last decades. COVID-19 being the most remarkable one, showed the vulnerability of patients with neurodegenerative diseases like Alzheimer's disease (AD). This review studies the pathological interlinks and triggering factors between the two illnesses and proposes a multifactorial pathway of AD causation due to COVID-19. The article evaluates and describes all the postulated hypotheses which explain the etiology and possible pathogenesis of the disease in four domains: Inflammation & Neurobiochemical interactions, Oxidative Stress, Genetic Factors, and Social Isolation. We believe that a probable hypothesis of an underlying cause of AD after COVID-19 infection could be the interplay of all these factors.


Subject(s)
Alzheimer Disease , COVID-19 , Humans , Alzheimer Disease/epidemiology , Alzheimer Disease/etiology , Alzheimer Disease/metabolism , COVID-19/complications , Inflammation/complications , Oxidative Stress
2.
Front Behav Neurosci ; 17: 1122163, 2023.
Article in English | MEDLINE | ID: mdl-36910127

ABSTRACT

Introduction: Depression and anxiety are highly comorbid mental disorders with marked sex differences. Both disorders show altered activity in the amygdala, hippocampus, and prefrontal cortex. Infralimbic deep brain stimulation (DBS-IL) has anxiolytic and antidepressant effects, but the underlying mechanisms remain unclear. We aimed to contribute to understanding sex differences in the neurobiology of these disorders. Methods: In male and female rats, we recorded neural oscillations along the dorsoventral axis of the hippocampus and the amygdala in response to an anxiogenic drug, FG-7142. Following this, we applied DBS-IL. Results: Surprisingly, in females, the anxiogenic drug failed to induce most of the changes observed in males. We found sex differences in slow, delta, theta, and beta oscillations, and the amygdalo-hippocampal communication in response to FG-7142, with modest changes in females. Females had a more prominent basal gamma, and the drug altered this band only in males. We also analyzed c-Fos expression in both sexes in stress-related structures in response to FG-7142, DBS-IL, and combined interventions. With the anxiogenic drug, females showed reduced expression in the nucleus incertus, amygdala, septohippocampal network, and neocortical levels. In both experiments, the DBS-IL reversed FG-7142-induced effects, with a more substantial effect in males than females. Discussion: Here, we show a reduced response in female rats which contrasts with the higher prevalence of anxiety in women but is consistent with other studies in rodents. Our results open compelling questions about sex differences in the neurobiology of anxiety and depression and their study in animal models.

3.
Front Neuroanat ; 16: 988015, 2022.
Article in English | MEDLINE | ID: mdl-36120099

ABSTRACT

Rodents detect chemical information mainly through the olfactory and vomeronasal systems, which play complementary roles to orchestrate appropriate behavioral responses. To characterize the integration of chemosensory information, we have performed electrophysiological and c-Fos studies of the bulbo-amygdalar network in freely behaving female mice exploring neutral or conspecific stimuli. We hypothesize that processing conspecifics stimuli requires both chemosensory systems, and thus our results will show shared patterns of activity in olfactory and vomeronasal structures. Were the hypothesis not true, the activity of the vomeronasal structures would be independent of that of the main olfactory system. In the c-Fos analysis, we assessed the activation elicited by neutral olfactory or male stimuli in a broader network. Male urine induced a significantly higher activity in the vomeronasal system compared to that induced by a neutral odorant. Concerning the olfactory system, only the cortex-amygdala transition area showed significant activation. No differential c-Fos expression was found in the reward system and the basolateral amygdala. These functional patterns in the chemosensory circuitry reveal a strong top-down control of the amygdala over both olfactory bulbs, suggesting an active role of the amygdala in the integration of chemosensory information directing the activity of the bulbs during environmental exploration.

4.
Focus (Am Psychiatr Publ) ; 19(3): 355-364, 2021 Jul.
Article in English | MEDLINE | ID: mdl-34690605

ABSTRACT

(Appeared originally in Int J Mol Sci 2019, 20 5536).

5.
Int J Mol Sci ; 22(19)2021 Oct 08.
Article in English | MEDLINE | ID: mdl-34639229

ABSTRACT

Biomarkers for disease diagnosis and prognosis are crucial in clinical practice. They should be objective and quantifiable and respond to specific therapeutic interventions. Optimal biomarkers should reflect the underlying process (pathological or not), be reproducible, widely available, and allow measurements repeatedly over time. Ideally, biomarkers should also be non-invasive and cost-effective. This review aims to focus on the usefulness and limitations of electroencephalography (EEG) in the search for Alzheimer's disease (AD) biomarkers. The main aim of this article is to review the evolution of the most used biomarkers in AD and the need for new peripheral and, ideally, non-invasive biomarkers. The characteristics of the EEG as a possible source for biomarkers will be revised, highlighting its advantages compared to the molecular markers available so far.


Subject(s)
Alzheimer Disease/diagnosis , Biomarkers/analysis , Cerebrospinal Fluid/cytology , Electroencephalography/methods , Alzheimer Disease/diagnostic imaging , Animals , Humans
6.
Nat Commun ; 12(1): 5286, 2021 09 06.
Article in English | MEDLINE | ID: mdl-34489431

ABSTRACT

Vomeronasal information is critical in mice for territorial behavior. Consequently, learning the territorial spatial structure should incorporate the vomeronasal signals indicating individual identity into the hippocampal cognitive map. In this work we show in mice that navigating a virtual environment induces synchronic activity, with causality in both directionalities, between the vomeronasal amygdala and the dorsal CA1 of the hippocampus in the theta frequency range. The detection of urine stimuli induces synaptic plasticity in the vomeronasal pathway and the dorsal hippocampus, even in animals with experimentally induced anosmia. In the dorsal hippocampus, this plasticity is associated with the overexpression of pAKT and pGSK3ß. An amygdalo-entorhino-hippocampal circuit likely underlies this effect of pheromonal information on hippocampal learning. This circuit likely constitutes the neural substrate of territorial behavior in mice, and it allows the integration of social and spatial information.


Subject(s)
Amygdala/physiology , CA1 Region, Hippocampal/physiology , Glycogen Synthase Kinase 3 beta/genetics , Olfactory Perception/physiology , Proto-Oncogene Proteins c-akt/genetics , Spatial Behavior/physiology , Vomeronasal Organ/physiology , Amygdala/cytology , Animals , Anosmia/genetics , Anosmia/metabolism , Anosmia/physiopathology , Behavior, Animal , CA1 Region, Hippocampal/cytology , Female , Gene Expression Regulation , Glycogen Synthase Kinase 3 beta/metabolism , Learning/physiology , Male , Mice , Nerve Net/cytology , Nerve Net/physiology , Neuronal Plasticity/physiology , Neurons/cytology , Neurons/metabolism , Pheromones/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Social Perception , Space Perception/physiology , Theta Rhythm/physiology , Vomeronasal Organ/cytology
7.
Neuroscience ; 476: 72-89, 2021 11 10.
Article in English | MEDLINE | ID: mdl-34543675

ABSTRACT

Displaying a stress response to threatening stimuli is essential for survival. These reactions must be adjusted to be adaptive. Otherwise, even mental illnesses may develop. Describing the physiological stress response may contribute to distinguishing the abnormal responses that accompany the pathology, which may help to improve the development of both diagnoses and treatments. Recent advances have elucidated many of the processes and structures involved in stress response management; however, there is still much to unravel regarding this phenomenon. The main aim of the present research is to characterize the response of three brain areas deeply involved in the stress response (i.e., to an acute stressful experience). Specifically, the electrophysiological activity of the infralimbic division of the medial prefrontal cortex (IL), the basolateral nucleus of the amygdala (BLA), and the dorsal hippocampus (dHPC) was recorded after the infusion of 0.5 µl of corticosterone-releasing factor into the dorsal raphe nucleus (DRN), a procedure which has been validated as a paradigm to cause acute stress. This procedure induced a delayed reduction in slow waves in the three structures, and an increase in faster oscillations, such as those in theta, beta, and gamma bands. The mutual information at low theta frequencies between the BLA and the IL increased, and the delta and slow wave mutual information decreased. The low theta-mid gamma phase-amplitude coupling increased within BLA, as well as between BLA and IL. This electrical pattern may facilitate the activation of these structures, in response to the stressor, and memory consolidation.


Subject(s)
Amygdala , Memory Consolidation , Dorsal Raphe Nucleus , Hippocampus , Prefrontal Cortex
8.
Front Physiol ; 12: 708061, 2021.
Article in English | MEDLINE | ID: mdl-34512381

ABSTRACT

Oxidative stress is an early occurrence in the development of Alzheimer's disease (AD) and one of its proposed etiologic hypotheses. There is sufficient experimental evidence supporting the theory that impaired antioxidant enzymatic activity and increased formation of reactive oxygen species (ROS) take place in this disease. However, the antioxidant treatments fail to stop its advancement. Its multifactorial condition and the diverse toxicological cascades that can be initiated by ROS could possibly explain this failure. Recently, it has been suggested that cerebral small vessel disease (CSVD) contributes to the onset of AD. Oxidative stress is a central hallmark of CSVD and is depicted as an early causative factor. Moreover, data from various epidemiological and clinicopathological studies have indicated a relationship between CSVD and AD where endothelial cells are a source of oxidative stress. These cells are also closely related to oligodendrocytes, which are, in particular, sensitive to oxidation and lead to myelination being compromised. The sleep/wake cycle is another important control in the proliferation, migration, and differentiation of oligodendrocytes, and sleep loss reduces myelin thickness. Moreover, sleep plays a crucial role in resistance against CSVD, and poor sleep quality increases the silent markers of this vascular disease. Sleep disruption is another early occurrence in AD and is related to an increase in oxidative stress. In this study, the relationship between CSVD, oligodendrocyte dysfunction, and sleep disorders is discussed while focusing on oxidative stress as a common occurrence and its possible role in the onset of AD.

9.
Biomedicines ; 9(7)2021 Jul 06.
Article in English | MEDLINE | ID: mdl-34356846

ABSTRACT

Anxiety and depression exhibit high comorbidity and share the alteration of the amygdala-hippocampal-prefrontal network, playing different roles in the ventral and dorsal hippocampi. Deep brain stimulation of the infralimbic cortex in rodents or the human equivalent-the subgenual cingulate cortex-constitutes a fast antidepressant treatment. The aim of this work was: (1) to describe the oscillatory profile in a rodent model of anxiety, and (2) to deepen the therapeutic basis of infralimbic deep brain stimulation in mood disorders. First, the anxiogenic drug FG-7142 was administered to anaesthetized rats to characterize neural oscillations within the amygdala and the dorsoventral axis of the hippocampus. Next, deep brain stimulation was applied. FG-7142 administration drastically reduced the slow waves, increasing delta, low theta, and beta oscillations in the network. Moreover, FG-7142 altered communication in these bands in selective subnetworks. Deep brain stimulation of the infralimbic cortex reversed most of these FG-7142 effects. Cross-frequency coupling was also inversely modified by FG-7142 and by deep brain stimulation. Our study demonstrates that the hyperactivated amygdala-hippocampal network associated with the anxiogenic drug exhibits an oscillatory fingerprint. The study contributes to comprehending the neurobiological basis of anxiety and the effects of infralimbic deep brain stimulation.

10.
Int J Mol Sci ; 21(3)2020 Feb 10.
Article in English | MEDLINE | ID: mdl-32050587

ABSTRACT

In recent years, the idea that sleep is critical for cognitive processing has gained strength. Alzheimer's disease (AD) is the most common form of dementia worldwide and presents a high prevalence of sleep disturbances. However, it is difficult to establish causal relations, since a vicious circle emerges between different aspects of the disease. Nowadays, we know that sleep is crucial to consolidate memory and to remove the excess of beta-amyloid and hyperphosphorilated tau accumulated in AD patients' brains. In this review, we discuss how sleep disturbances often precede in years some pathological traits, as well as cognitive decline, in AD. We describe the relevance of sleep to memory consolidation, focusing on changes in sleep patterns in AD in contrast to normal aging. We also analyze whether sleep alterations could be useful biomarkers to predict the risk of developing AD and we compile some sleep-related proposed biomarkers. The relevance of the analysis of the sleep microstructure is highlighted to detect specific oscillatory patterns that could be useful as AD biomarkers.


Subject(s)
Alzheimer Disease/etiology , Amyloid beta-Peptides/cerebrospinal fluid , Sleep Wake Disorders/etiology , tau Proteins/cerebrospinal fluid , Alzheimer Disease/cerebrospinal fluid , Alzheimer Disease/physiopathology , Biomarkers/cerebrospinal fluid , Cognition , Humans , Memory , Sleep Wake Disorders/cerebrospinal fluid , Sleep Wake Disorders/physiopathology
11.
J Comp Neurol ; 528(8): 1367-1391, 2020 06.
Article in English | MEDLINE | ID: mdl-31785155

ABSTRACT

The pathogenesis of fibromyalgia is still unknown. Core symptoms include pain, depression, and sleep disturbances with high comorbidity, suggesting alterations in the monoaminergic system as a common origin of this disease. The reserpine-induced myalgia (RIM) model lowers pain thresholds and produces depressive-like symptoms. The present work aims to evaluate temporal dynamics in the oscillatory profiles and motor activity during sleep in this model and to evaluate if the model mimics the sleep disorders that occur in fibromyalgia patients. Hippocampal and electromyogram activity were recorded in chronically implanted rats. Following 3 days of basal recordings, reserpine was administered on three consecutive days to achieve the RIM. Postreserpine recordings were taken on alternate days for 21 days. Reserpine induced changes in the sleep architecture with more transitions between states, and a different pattern between the administration period and postreserpine weeks. Administration days were characterized by a larger amount of rapid eyes movement sleep with dominant theta waves without atonia. Following the reserpinization, theta oscillations were always more fragmented and with lower frequency. On the postreserpine days, sleep was dominated by slow-wave sleep with fast intrusions and reduced hierarchical coupling with spindles and ripples. Simultaneous electromyography recordings also showed muscle twitches during sleep and the dissociation of theta activity and muscle atonia. Abnormally high slow waves, alpha/delta intrusions, frequent transitions, and muscle twitches are common traits in fibromyalgia. Therefore, our analyses support the validity of the RIM model to study sleep disorders in fibromyalgia, and provide new insights into the research of oscillographic biomarkers.


Subject(s)
Brain Waves/physiology , Fibromyalgia/physiopathology , Hippocampus/physiopathology , Reserpine/toxicity , Sleep Wake Disorders/physiopathology , Animals , Antipsychotic Agents/toxicity , Brain Waves/drug effects , Electroencephalography/drug effects , Electroencephalography/methods , Fibromyalgia/chemically induced , Hippocampus/drug effects , Male , Rats , Rats, Sprague-Dawley , Sleep/drug effects , Sleep/physiology , Sleep Wake Disorders/chemically induced
12.
Int J Mol Sci ; 20(22)2019 Nov 06.
Article in English | MEDLINE | ID: mdl-31698826

ABSTRACT

While Alzheimer's disease (AD) classical diagnostic criteria rely on clinical data from a stablished symptomatic disease, newer criteria aim to identify the disease in its earlier stages. For that, they incorporated the use of AD's specific biomarkers to reach a diagnosis, including the identification of Aß and tau depositions, glucose hypometabolism, and cerebral atrophy. These biomarkers created a new concept of the disease, in which AD's main pathological processes have already taken place decades before we can clinically diagnose the first symptoms. Therefore, AD is now considered a dynamic disease with a gradual progression, and dementia is its final stage. With that in mind, new models were proposed, considering the orderly increment of biomarkers and the disease as a continuum, or the variable time needed for the disease's progression. In 2011, the National Institute on Aging and the Alzheimer's Association (NIA-AA) created separate diagnostic recommendations for each stage of the disease continuum-preclinical, mild cognitive impairment, and dementia. However, new scientific advances have led them to create a unifying research framework in 2018 that, although not intended for clinical use as of yet, is a step toward shifting the focus from the clinical symptoms to the biological alterations and toward changing the future diagnostic and treatment possibilities. This review aims to discuss the role of biomarkers in the onset of AD.


Subject(s)
Alzheimer Disease/diagnosis , Alzheimer Disease/metabolism , Biomarkers/metabolism , Alzheimer Disease/classification , Alzheimer Disease/diagnostic imaging , Humans , Risk Factors
13.
Front Neurosci ; 13: 508, 2019.
Article in English | MEDLINE | ID: mdl-31191220

ABSTRACT

Obesity is known to induce leptin and insulin resistance. Leptin is a peptide hormone synthesized in adipose tissue that mainly regulates food intake. It has been shown that insulin stimulates the production of leptin when adipocytes are exposed to glucose to encourage satiety; while leptin, via a negative feedback, decreases the insulin release and enhances tissue sensitivity to it, leading to glucose uptake for energy utilization or storage. Therefore, resistance to insulin is closely related to leptin resistance. Obesity in middle age has also been related to Alzheimer's disease (AD). In recent years, the relation between impaired leptin signaling pathway and the onset of AD has been studied. In all this context the role of the blood brain barrier (BBB) is crucial. Slow excitotoxicity happens in AD due to an excess of the neurotransmitter glutamate. Since leptin has been shown to regulate N-methyl-D-aspartate (NMDA) receptors, we want to review the link between these pathological pathways, and how they are affected by other AD triggering factors and its role in the onset of AD.

14.
Int J Mol Sci ; 20(4)2019 Feb 18.
Article in English | MEDLINE | ID: mdl-30781638

ABSTRACT

Vitamin E was proposed as treatment for Alzheimer's disease many years ago. However, the effectiveness of the drug is not clear. Vitamin E is an antioxidant and neuroprotector and it has anti-inflammatory and hypocholesterolemic properties, driving to its importance for brain health. Moreover, the levels of vitamin E in Alzheimer's disease patients are lower than in non-demented controls. Thus, vitamin E could be a good candidate to have beneficial effects against Alzheimer's. However, evidence is consistent with a limited effectiveness of vitamin E in slowing progression of dementia; the information is mixed and inconclusive. The question is why does vitamin E fail to treat Alzheimer's disease? In this paper we review the studies with and without positive results in Alzheimer's disease and we discuss the reasons why vitamin E as treatment sometimes has positive results on cognition but at others, it does not.


Subject(s)
Alzheimer Disease/drug therapy , Vitamin E/therapeutic use , Clinical Trials as Topic , Cognition Disorders/drug therapy , Cognition Disorders/prevention & control , Humans , Oxidative Stress , Treatment Outcome , Vitamin E/pharmacology
15.
J Comp Neurol ; 526(8): 1403-1416, 2018 06 01.
Article in English | MEDLINE | ID: mdl-29473165

ABSTRACT

The stress system coordinates the adaptive reactions of the organism to stressors. Therefore, dysfunctions in this circuit may correlate to anxiety-related disorders, including depression. Comprehending the dynamics of this network may lead to a better understanding of the mechanisms that underlie these diseases. The central nucleus of the amygdala (CeA) activates the hypothalamic-pituitary-adrenal axis and brainstem nodes by triggering endocrine, autonomic and behavioral stress responses. The medial prefrontal cortex plays a significant role in regulating reactions to stressors, and is specifically important for limiting fear responses. Brain oscillations reflect neural systems activity. Synchronous neuronal assemblies facilitate communication and synaptic plasticity, mechanisms that cooperatively support the temporal representation and long-term consolidation of information. The purpose of this article was to delve into the interactions between these structures in stress contexts by evaluating changes in oscillatory activity. We particularly analyzed the local field potential in the infralimbic region of the medial prefrontal cortex (IL) in urethane-anesthetized rats after the electrical activation of the central nucleus of the amygdala by mimicking firing rates induced by acute stress. Electrical CeA activation induced a delayed, but significant, change in the IL, with prominent slow waves accompanied by an increase in the theta and gamma activities, and spindles. The phase-amplitude coupling of both slow waves and theta oscillations significantly increased with faster oscillations, including theta-gamma coupling and the nesting of spindles, theta and gamma oscillations in the slow wave cycle. These results are further discussed in neural processing terms of the stress response and memory formation.


Subject(s)
Afferent Pathways/physiology , Amygdala/physiology , Cerebral Cortex/cytology , Electric Stimulation/methods , Evoked Potentials/physiology , Neurons/physiology , Animals , Female , Rats , Rats, Sprague-Dawley , Time Factors
16.
Neurosci Lett ; 658: 73-78, 2017 Sep 29.
Article in English | MEDLINE | ID: mdl-28803957

ABSTRACT

Tests based on hyponeophagia phenomena are the most widely used to check the efficacy and efficiency of new-generation chronic antidepressant treatments. Even so, these tests lack strict consensus about their methodology, which reduces their validity, reproducibility and makes translatability difficult. Therefore, after an extensive literature review on this subject, we propose a methodological protocol for the Novelty-Suppressed Feeding Test to normalize this situation. Animals were induced to a reserpine-induced depression model and were then chronically treated with duloxetine, desvenlafaxine or vehicle. After a 14-day treatment, a standardized Novelty-Suppressed Feeding Test was performed. Standardization included three-phase deprivation and the introduction of standard highly palatable food. The duloxetine-treated and desvenlafaxine-treated animals exhibited behavioral improvement of depressive-like symptoms. They took less time to eat from the center of the open-field, and approached food more times per minute than the vehicle-treated animals. This normalization proposal proves effective in measuring the antidepressant effect on chronic treatment. Thus introducing this normalization proposal would reduce inter-laboratory variability and increase the validity and robustness of this behavioral test.


Subject(s)
Antidepressive Agents/pharmacology , Duloxetine Hydrochloride/pharmacology , Exploratory Behavior/drug effects , Reserpine/pharmacology , Animals , Depression/drug therapy , Depressive Disorder/drug therapy , Disease Models, Animal , Male , Rats, Sprague-Dawley , Reproducibility of Results
17.
J Physiol ; 595(5): 1775-1792, 2017 03 01.
Article in English | MEDLINE | ID: mdl-27880004

ABSTRACT

KEY POINTS: The nucleus incertus is a key node of the brainstem circuitry involved in hippocampal theta rhythmicity. Synchronisation exists between the nucleus incertus and hippocampal activities during theta periods. By the Granger causality analysis, we demonstrated a directional information flow between theta rhythmical neurons in the nucleus incertus and the hippocampus in theta-on states. The electrical stimulation of the nucleus incertus is also able to evoke a phase reset of the hippocampal theta wave. Our data suggest that the nucleus incertus is a key node of theta generation and the modulation network. ABSTRACT: In recent years, a body of evidence has shown that the nucleus incertus (NI), in the dorsal tegmental pons, is a key node of the brainstem circuitry involved in hippocampal theta rhythmicity. Ascending reticular brainstem system activation evokes hippocampal theta rhythm with coupled neuronal activity in the NI. In a recent paper, we showed three populations of neurons in the NI with differential firing during hippocampal theta activation. The objective of this work was to better evaluate the causal relationship between the activity of NI neurons and the hippocampus during theta activation in order to further understand the role of the NI in the theta network. A Granger causality analysis was run to determine whether hippocampal theta activity with sensory-evoked theta depends on the neuronal activity of the NI, or vice versa. The analysis showed causal interdependence between the NI and the hippocampus during theta activity, whose directional flow depended on the different neuronal assemblies of the NI. Whereas type I and II NI neurons mainly acted as receptors of hippocampal information, type III neuronal activity was the predominant source of flow between the NI and the hippocampus in theta states. We further determined that the electrical activation of the NI was able to reset hippocampal waves with enhanced theta-band power, depending on the septal area. Collectively, these data suggest that hippocampal theta oscillations after sensory activation show dependence on NI neuron activity, which could play a key role in establishing optimal conditions for memory encoding.


Subject(s)
Hippocampus/physiology , Raphe Nuclei/physiology , Animals , Electric Stimulation , Female , Neurons/physiology , Rats, Sprague-Dawley , Theta Rhythm
18.
Physiol Rep ; 4(14)2016 Jul.
Article in English | MEDLINE | ID: mdl-27449812

ABSTRACT

Deep brain stimulation (DBS) is a new investigational therapy that has generated positive results in refractory depression. Although the neurochemical and behavioral effects of DBS have been examined, less attention has been paid to the influence of DBS on the network dynamics between different brain areas, which could contribute to its therapeutic effects. Herein, we set out to identify the effects of 1 h DBS in the infralimbic cortex (IL) on the oscillatory network dynamics between hippocampus and basolateral amygdala (BLA), two regions implicated in depression and its treatment. Urethane-anesthetized rats with bilaterally implanted electrodes in the IL were exposed to 1 h constant stimulation of 130 Hz of frequency, 60 µA of constant current intensity and biphasic pulse width of 80 µsec. After a period of baseline recording, local field potentials (LFP) were recorded with formvar-insulated stainless steel electrodes. DBS of the IL increased the power of slow wave (SW, <1.5 Hz) and theta (3-12 Hz) frequencies in the hippocampus and BLA Furthermore, IL DBS caused a precise coupling in different frequency bands between both brain structures. The increases in SW band synchronization in hippocampus and BLA after DBS suggest that these changes may be important for the improvement of depressive behavior. In addition, the augmentation in theta synchrony might contribute to improvement in emotional and cognitive processes.


Subject(s)
Amygdala/physiology , Brain Waves , Deep Brain Stimulation , Electroencephalography , Hippocampus/physiology , Prefrontal Cortex/physiology , Animals , Behavior, Animal , Male , Neural Pathways/physiology , Rats, Wistar , Signal Processing, Computer-Assisted , Time Factors
19.
Physiol Behav ; 151: 456-62, 2015 Nov 01.
Article in English | MEDLINE | ID: mdl-26222614

ABSTRACT

Since the pathogenesis of fibromyalgia is unknown, treatment options are limited, ineffective and in fact based on symptom relief. A recently proposed rat model of fibromyalgia is based on central depletion of monamines caused by reserpine administration. This model showed widespread musculoskeletal pain and depressive-like symptoms, but the methodology used to measure such symptoms has been criticized. Evidence relates the high prevalence of pain and depression in fibromyalgia to common pathogenic pathways, most probably focused on the monoaminergic system. The present study aims at a validation of the reserpine model of fibromyalgia. For this purpose, rats undergoing this model have been tested for depressive-like symptoms with a Novelty-Suppressed Feeding Test adaptation. Animals administered with reserpine and subjected to forced food deprivation performed a smaller number of incursions to the center of the open field, evidenced by a decrease in the per-minute rate of the rats' approaching, smelling or touching the food. They also took more time to eat from the central food than control rats. These NSFT findings suggest the presence of depressive-like disorders in this animal model of fibromyalgia.


Subject(s)
Adrenergic Uptake Inhibitors/toxicity , Depression/etiology , Fibromyalgia/chemically induced , Fibromyalgia/complications , Reserpine/toxicity , Animals , Disease Models, Animal , Exploratory Behavior/drug effects , Feeding Behavior/drug effects , Hindlimb Suspension , Inhibition, Psychological , Male , Motor Activity/drug effects , Pain Threshold/drug effects , Rats , Rats, Sprague-Dawley , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...