Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Main subject
Language
Publication year range
1.
Nat Mater ; 15(2): 164-8, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26641019

ABSTRACT

Controlling the dynamics of spins on surfaces is pivotal to the design of spintronic and quantum computing devices. Proposed schemes involve the interaction of spins with graphene to enable surface-state spintronics and electrical spin manipulation. However, the influence of the graphene environment on the spin systems has yet to be unravelled. Here we explore the spin-graphene interaction by studying the classical and quantum dynamics of molecular magnets on graphene. Whereas the static spin response remains unaltered, the quantum spin dynamics and associated selection rules are profoundly modulated. The couplings to graphene phonons, to other spins, and to Dirac fermions are quantified using a newly developed model. Coupling to Dirac electrons introduces a dominant quantum relaxation channel that, by driving the spins over Villain's threshold, gives rise to fully coherent, resonant spin tunnelling. Our findings provide fundamental insight into the interaction between spins and graphene, establishing the basis for electrical spin manipulation in graphene nanodevices.

2.
Adv Mater ; 27(16): 2635-41, 2015 Apr 24.
Article in English | MEDLINE | ID: mdl-25787669

ABSTRACT

The response of individual domains in wafer-sized chemical vapor deposition graphene is measured by contactless sub-terahertz interferometry, observing the intrinsic optical conductance and reaching very high mobility values. It is shown that charged scatterers limit the mobility, validating previous theoretical predictions, and sub-terahertz quality assessment is demonstrated, as necessary for large-scale applications in touchscreens, as well as wearable and optoelectronic devices.


Subject(s)
Graphite/chemistry , Copper/chemistry , Interferometry/methods , Polymethyl Methacrylate/chemistry , Scattering, Radiation , Silicon Dioxide/chemistry , Spectrum Analysis/methods , Temperature
3.
J Chem Phys ; 143(24): 244321, 2015 Dec 28.
Article in English | MEDLINE | ID: mdl-26723685

ABSTRACT

A detailed experimental investigation of the effects giving rise to the magnetic energy level structure in the vicinity of the level crossing (LC) at low temperature is reported for the open antiferromagnetic molecular ring Cr8Zn. The study is conducted by means of thermodynamic techniques (torque magnetometry, magnetization and specific heat measurements) and microscopic techniques (nuclear magnetic resonance line width, nuclear spin lattice, and spin-spin relaxation measurements). The experimental results are shown to be in excellent agreement with theoretical calculations based on a minimal spin model Hamiltonian, which includes a Dzyaloshinskii-Moriya interaction. The first ground state level crossing at µ0Hc1 = 2.15 T is found to be an almost true LC while the second LC at µ0Hc2 = 6.95 T has an anti-crossing gap of Δ12 = 0.19 K. In addition, both NMR and specific heat measurements show the presence of a level anti-crossing between excited states at µ0H = 4.5 T as predicted by the theory. In all cases, the fit of the experimental data is improved by introducing a distribution of the isotropic exchange couplings (J), i.e., using a J strain model. The peaks at the first and second LCs in the nuclear spin-lattice relaxation rate are dominated by inelastic scattering and a value of Γ âˆ¼ 10(10) rad/s is inferred for the life time broadening of the excited state of the open ring, due to spin phonon interaction. A loss of NMR signal (wipe-out effect) is observed for the first time at LC and is explained by the enhancement of the spin-spin relaxation rate due to the inelastic scattering.

4.
Dalton Trans ; 43(11): 4220-32, 2014 Mar 21.
Article in English | MEDLINE | ID: mdl-24514949

ABSTRACT

We discuss current developments in the synthesis and characterization of magnetic nanohybrids made of molecular magnets and nanostructured materials. We first review several novel approaches that have recently been attempted to combine magnetic coordination complexes with differently-obtained inorganic systems. Special focus is placed on how the altered environment can affect the magnetic properties of single molecules, providing new routes to multifunctional devices based on hybrid magnetic nanosystems. We then show how this approach is opening new outlooks towards the control of nanomagnets using external stimuli (e.g. photons, electrons, etc.) and for the creation of ultra-sensitive devices. Eventually we provide a unified vision of the area, with a personal perspective on the main goals currently at stake and of possible future developments.

SELECTION OF CITATIONS
SEARCH DETAIL
...