Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 103
Filter
1.
Methods Enzymol ; 700: 49-76, 2024.
Article in English | MEDLINE | ID: mdl-38971612

ABSTRACT

High pressure is both an environmental challenge to which deep sea biology has to adapt, and a highly sensitive thermodynamic tool that can be used to trigger structural changes in biological molecules and assemblies. Lipid membranes are amongst the most pressure sensitive biological assemblies and pressure can have a large influence on their structure and properties. In this chapter, we will explore the use of high pressure small angle X-ray diffraction and high pressure microscopy to measure and quantify changes in the lateral structure of lipid membranes under both equilibrium high pressure conditions and in response to pressure jumps.


Subject(s)
Hydrostatic Pressure , Lipid Bilayers , X-Ray Diffraction , X-Ray Diffraction/methods , Lipid Bilayers/chemistry , Lipid Bilayers/metabolism , Scattering, Small Angle , Membrane Lipids/chemistry , Membrane Lipids/metabolism , Thermodynamics
2.
J Am Chem Soc ; 146(19): 13176-13182, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38691505

ABSTRACT

Synthetic cells can be constructed from diverse molecular components, without the design constraints associated with modifying 'living' biological systems. This can be exploited to generate cells with abiotic components, creating functionalities absent in biology. One example is magnetic responsiveness, the activation and modulation of encapsulated biochemical processes using a magnetic field, which is absent from existing synthetic cell designs. This is a critical oversight, as magnetic fields are uniquely bio-orthogonal, noninvasive, and highly penetrative. Here, we address this by producing artificial magneto-responsive organelles by coupling thermoresponsive membranes with hyperthermic Fe3O4 nanoparticles and embedding them in synthetic cells. Combining these systems enables synthetic cell microreactors to be built using a nested vesicle architecture, which can respond to alternating magnetic fields through in situ enzymatic catalysis. We also demonstrate the modulation of biochemical reactions by using different magnetic field strengths and the potential to tune the system using different lipid compositions. This platform could unlock a wide range of applications for synthetic cells as programmable micromachines in biomedicine and biotechnology.


Subject(s)
Artificial Cells , Magnetic Fields , Artificial Cells/chemistry , Artificial Cells/metabolism , Magnetite Nanoparticles/chemistry
3.
Proc Natl Acad Sci U S A ; 120(35): e2307772120, 2023 08 29.
Article in English | MEDLINE | ID: mdl-37603747

ABSTRACT

Artificial cells are biomimetic structures formed from molecular building blocks that replicate biological processes, behaviors, and architectures. Of these building blocks, hydrogels have emerged as ideal, yet underutilized candidates to provide a gel-like chassis in which to incorporate both biological and nonbiological componentry which enables the replication of cellular functionality. Here, we demonstrate a microfluidic strategy to assemble biocompatible cell-sized hydrogel-based artificial cells with a variety of different embedded functional subcompartments, which act as engineered synthetic organelles. The organelles enable the recreation of increasingly biomimetic behaviors, including stimulus-induced motility, content release through activation of membrane-associated proteins, and enzymatic communication with surrounding bioinspired compartments. In this way, we showcase a foundational strategy for the bottom-up construction of hydrogel-based artificial cell microsystems which replicate fundamental cellular behaviors, paving the way for the construction of next-generation biotechnological devices.


Subject(s)
Artificial Cells , Biomimetics , Hydrogels , Communication , Organelles
4.
ACS Synth Biol ; 12(4): 1227-1238, 2023 04 21.
Article in English | MEDLINE | ID: mdl-36977193

ABSTRACT

One of the main drivers within the field of bottom-up synthetic biology is to develop artificial chemical machines, perhaps even living systems, that have programmable functionality. Numerous toolkits exist to generate giant unilamellar vesicle-based artificial cells. However, methods able to quantitatively measure their molecular constituents upon formation is an underdeveloped area. We report an artificial cell quality control (AC/QC) protocol using a microfluidic-based single-molecule approach, enabling the absolute quantification of encapsulated biomolecules. While the measured average encapsulation efficiency was 11.4 ± 6.8%, the AC/QC method allowed us to determine encapsulation efficiencies per vesicle, which varied significantly from 2.4 to 41%. We show that it is possible to achieve a desired concentration of biomolecule within each vesicle by commensurate compensation of its concentration in the seed emulsion. However, the variability in encapsulation efficiency suggests caution is necessary when using such vesicles as simplified biological models or standards.


Subject(s)
Artificial Cells , Unilamellar Liposomes , Unilamellar Liposomes/chemistry , Microfluidics/methods , Synthetic Biology , Emulsions
5.
Proc Natl Acad Sci U S A ; 119(42): e2206563119, 2022 10 18.
Article in English | MEDLINE | ID: mdl-36223394

ABSTRACT

Intercellular communication is a hallmark of living systems. As such, engineering artificial cells that possess this behavior has been at the heart of activities in bottom-up synthetic biology. Communication between artificial and living cells has potential to confer novel capabilities to living organisms that could be exploited in biomedicine and biotechnology. However, most current approaches rely on the exchange of chemical signals that cannot be externally controlled. Here, we report two types of remote-controlled vesicle-based artificial organelles that translate physical inputs into chemical messages that lead to bacterial activation. Upon light or temperature stimulation, artificial cell membranes are activated, releasing signaling molecules that induce protein expression in Escherichia coli. This distributed approach differs from established methods for engineering stimuli-responsive bacteria. Here, artificial cells (as opposed to bacterial cells themselves) are the design unit. Having stimuli-responsive elements compartmentalized in artificial cells has potential applications in therapeutics, tissue engineering, and bioremediation. It will underpin the design of hybrid living/nonliving systems where temporal control over population interactions can be exerted.


Subject(s)
Artificial Cells , Biological Phenomena , Artificial Cells/chemistry , Bacteria , Organelles/metabolism , Synthetic Biology
6.
ACS Nano ; 16(6): 9389-9400, 2022 06 28.
Article in English | MEDLINE | ID: mdl-35695383

ABSTRACT

Artificial cells are minimal structures constructed from biomolecular building blocks designed to mimic cellular processes, behaviors, and architectures. One near-ubiquitous feature of cellular life is the spatial organization of internal content. We know from biology that organization of content (including in membrane-bound organelles) is linked to cellular functions and that this feature is dynamic: the presence, location, and degree of compartmentalization changes over time. Vesicle-based artificial cells, however, are not currently able to mimic this fundamental cellular property. Here, we describe an artificial cell design strategy that addresses this technological bottleneck. We create a series of artificial cell architectures which possess multicompartment assemblies localized either on the inner or on the outer surface of the artificial cell membrane. Exploiting liquid-liquid phase separation, we can also engineer spatially segregated regions of condensed subcompartments attached to the cell surface, aligning with coexisting membrane domains. These structures can sense changes in environmental conditions and respond by reversibly transitioning from condensed multicompartment layers on the membrane surface to a dispersed state in the cell lumen, mimicking the dynamic compartmentalization found in biological cells. Likewise, we engineer exosome-like subcompartments that can be released to the environment. We can achieve this by using two types of triggers: chemical (addition of salts) and mechanical (by pulling membrane tethers using optical traps). These approaches allow us to control the compartmentalization state of artificial cells on population and single-cell levels.


Subject(s)
Artificial Cells , Organelles/metabolism , Membranes, Artificial , Cell Membrane
7.
Lab Chip ; 22(5): 972-985, 2022 03 01.
Article in English | MEDLINE | ID: mdl-35107110

ABSTRACT

Simple diffusion of molecular entities through a phospholipid bilayer, is a phenomenon of great importance to the pharmaceutical and agricultural industries. Current model lipid systems to probe this typically only employ fluorescence as a readout, thus limiting the range of assessable chemical matter that can be studied. We report a new technology platform, the UV-DIB, which facilitates label free measurement of small molecule translocation rates. This is based upon the coupling of droplet interface bilayer technology with implemented fiber optics to facilitate analysis via ultraviolet spectroscopy, in custom designed PMMA wells. To improve on current DIB technology, the platform was designed to be reusable, with a high sampling rate and a limit of UV detection in the low µM regime. We demonstrate the use of our system to quantify passive diffusion in a reproducible and rapid manner where the system was validated by investigating multiple permeants of varying physicochemical properties across a range of lipid interfaces, each demonstrating differing kinetics. Our system permits the interrogation of structural dependence on the permeation rate of a given compound. We present this ability from two structural perspectives, that of the membrane, and the permeant. We observed a reduction in permeability between pure DOPC and DPhPC interfaces, concurring with literature and demonstrating our ability to study the effects of lipid composition on permeability. In relation to the effects of permeant structure, our device facilitated the rank ordering of various compounds from the xanthine class of compounds, where the structure of each permeant differed by a single group alteration. We found that DIBs were stable up to 5% DMSO, a molecule often used to aid solubilisation of pharmaceutical and agrochemical compounds. The ability of our device to rank-order compounds with such minor structural differences provides a level of precision that is rarely seen in current, industrially applied technologies.


Subject(s)
Lipid Bilayers , Phospholipids , Diffusion , Kinetics , Lipid Bilayers/chemistry , Permeability , Phospholipids/chemistry
8.
Nat Rev Chem ; 6(8): 562-578, 2022 08.
Article in English | MEDLINE | ID: mdl-37118012

ABSTRACT

Recent years have seen substantial efforts aimed at constructing artificial cells from various molecular components with the aim of mimicking the processes, behaviours and architectures found in biological systems. Artificial cell development ultimately aims to produce model constructs that progress our understanding of biology, as well as forming the basis for functional bio-inspired devices that can be used in fields such as therapeutic delivery, biosensing, cell therapy and bioremediation. Typically, artificial cells rely on a bilayer membrane chassis and have fluid aqueous interiors to mimic biological cells. However, a desire to more accurately replicate the gel-like properties of intracellular and extracellular biological environments has driven increasing efforts to build cell mimics based on hydrogels. This has enabled researchers to exploit some of the unique functional properties of hydrogels that have seen them deployed in fields such as tissue engineering, biomaterials and drug delivery. In this Review, we explore how hydrogels can be leveraged in the context of artificial cell development. We also discuss how hydrogels can potentially be incorporated within the next generation of artificial cells to engineer improved biological mimics and functional microsystems.


Subject(s)
Artificial Cells , Biomimetic Materials , Hydrogels/therapeutic use , Tissue Engineering , Biocompatible Materials/therapeutic use
9.
J R Soc Interface ; 18(185): 20210698, 2021 12.
Article in English | MEDLINE | ID: mdl-34875877

ABSTRACT

The interactions between small molecules and keratins are poorly understood. In this paper, a nuclear magnetic resonance method is presented to measure changes in the 1H T1 relaxation times of small molecules in human hair keratin to quantify their interaction with the fibre. Two populations of small-molecule compounds were identified with distinct relaxation times, demonstrating the partitioning of the compounds into different keratin environments. The changes in relaxation time for solvent in hair compared with bulk solvent were shown to be related to the molecular weight (MW) and the partition coefficient, LogP, of the solvent investigated. Compounds with low MWs and high hydrophilicities had greater reductions in their T1 relaxation times and therefore experienced increased interactions with the hair fibre. The relative population sizes were also calculated. This is a significant step towards modelling the behaviour of small molecules in keratinous materials and other large insoluble fibrous proteins.


Subject(s)
Hair , Keratins , Humans , Magnetic Resonance Spectroscopy , Molecular Weight , Proton Magnetic Resonance Spectroscopy
11.
Biophys J ; 120(17): 3787-3794, 2021 09 07.
Article in English | MEDLINE | ID: mdl-34273316

ABSTRACT

Cellular life relies on membranes, which provide a resilient and adaptive cell boundary. Many essential processes depend upon the ease with which the membrane is able to deform and bend, features that can be characterized by the bending rigidity. Quantitative investigations of such mechanical properties of biological membranes have primarily been undertaken in solely lipid bilayers and frequently in the absence of buffers. In contrast, much less is known about the influence of integral membrane proteins on bending rigidity under physiological conditions. We focus on an exemplar member of the ubiquitous major facilitator superfamily of transporters and assess the influence of lactose permease on the bending rigidity of lipid bilayers. Fluctuation analysis of giant unilamellar vesicles (GUVs) is a useful means to measure bending rigidity. We find that using a hydrogel substrate produces GUVs that are well suited to fluctuation analysis. Moreover, the hydrogel method is amenable to both physiological salt concentrations and anionic lipids, which are important to mimic key aspects of the native lactose permease membrane. Varying the fraction of the anionic lipid in the lipid mixture DOPC/DOPE/DOPG allows us to assess the dependence of membrane bending rigidity on the topology and concentration of an integral membrane protein in the lipid bilayer of GUVs. The bending rigidity gradually increases with the incorporation of lactose permease, but there is no further increase with greater amounts of the protein in the membrane.


Subject(s)
Lipid Bilayers , Phosphatidylcholines , Membrane Transport Proteins , Unilamellar Liposomes
12.
Chem Sci ; 12(6): 2138-2145, 2021 Jan 04.
Article in English | MEDLINE | ID: mdl-34163978

ABSTRACT

Droplet microcompartments linked by lipid bilayers show great promise in the construction of synthetic minimal tissues. Central to controlling the flow of information in these systems are membrane proteins, which can gate in response to specific stimuli in order to control the molecular flux between membrane separated compartments. This has been demonstrated with droplet interface bilayers (DIBs) using several different membrane proteins combined with electrical, mechanical, and/or chemical activators. Here we report the activation of the bacterial mechanosensitive channel of large conductance (MscL) in a dioleoylphosphatidylcholine:dioleoylphosphatidylglycerol DIB by controlling membrane asymmetry. We show using electrical measurements that the incorporation of lysophosphatidylcholine (LPC) into one of the bilayer leaflets triggers MscL gating in a concentration-dependent manner, with partial and full activation observed at 10 and 15 mol% LPC respectively. Our findings could inspire the design of new minimal tissues where flux pathways are dynamically defined by lipid composition.

13.
PLoS One ; 16(4): e0249201, 2021.
Article in English | MEDLINE | ID: mdl-33819279

ABSTRACT

INTRODUCTION: During viral pandemics, filtering facepiece (FFP) masks together with eye protection form the essential components of personal protective equipment (PPE) for healthcare workers. There remain concerns regarding insufficient global supply and imperfect protection offered by currently available PPE strategies. A range of full-face snorkel masks were adapted to accept high grade medical respiratory filters using bespoke-designed 3D-printed connectors. We compared the protection offered by the snorkel to that of standard PPE using a placebo-controlled respirator filtering test as well as a fluorescent droplet deposition experiment. Out of the 56 subjects tested, 42 (75%) passed filtering testing with the snorkel mask compared to 31 (55%) with a FFP3 respirator mask (p = 0.003). Amongst the 43 subjects who were not excluded following a placebo control, 85% passed filtering testing with the snorkel versus to 68% with a FFP3 mask (p = 0.008). Following front and lateral spray of fluorescence liquid particles, the snorkel mask also provided superior protection against droplet deposition within the subject's face, when compared to a standard PPE combination of FFP3 masks and eye protection (3.19x108 versus 6.81x108 fluorescence units, p<0.001). The 3D printable adaptors are available for free download online at https://www.ImperialHackspace.com/COVID-19-Snorkel-Respirator-Project/. CONCLUSION: Full-face snorkel masks adapted as particulate respirators performed better than a standard PPE combination of FFP3 mask and eye protection against aerosol inhalation and droplet deposition. This adaptation is therefore a promising PPE solution for healthcare workers during highly contagious viral outbreaks.


Subject(s)
COVID-19/prevention & control , Health Personnel , Masks , Occupational Exposure , Respiratory Protective Devices , Adult , Female , Humans , Male
14.
Nat Commun ; 12(1): 1673, 2021 03 15.
Article in English | MEDLINE | ID: mdl-33723263

ABSTRACT

There are increasing efforts to engineer functional compartments that mimic cellular behaviours from the bottom-up. One behaviour that is receiving particular attention is motility, due to its biotechnological potential and ubiquity in living systems. Many existing platforms make use of the Marangoni effect to achieve motion in water/oil (w/o) droplet systems. However, most of these systems are unsuitable for biological applications due to biocompatibility issues caused by the presence of oil phases. Here we report a biocompatible all aqueous (w/w) PEG/dextran Pickering-like emulsion system consisting of liposome-stabilised cell-sized droplets, where the stability can be easily tuned by adjusting liposome composition and concentration. We demonstrate that the compartments are capable of negative chemotaxis: these droplets can respond to a PEG/dextran polymer gradient through directional motion down to the gradient. The biocompatibility, motility and partitioning abilities of this droplet system offers new directions to pursue research in motion-related biological processes.


Subject(s)
Liposomes/chemistry , Chemotaxis , Dextrans/chemistry , Emulsions , Motion , Particle Size , Polyethylene Glycols/chemistry , Water
15.
ACS Nano ; 14(12): 17333-17353, 2020 Dec 22.
Article in English | MEDLINE | ID: mdl-33290039

ABSTRACT

Antibiotic resistance is a serious global health problem necessitating new bactericidal approaches such as nanomedicines. Dendrimersomes (DSs) have recently become a valuable alternative nanocarrier to polymersomes and liposomes due to their molecular definition and synthetic versatility. Despite this, their biomedical application is still in its infancy. Inspired by the localized antimicrobial function of neutrophil phagosomes and the versatility of DSs, a simple three-component DS-based nanoreactor with broad-spectrum bactericidal activity is presented. This was achieved by encapsulation of glucose oxidase (GOX) and myeloperoxidase (MPO) within DSs (GOX-MPO-DSs), self-assembled from an amphiphilic Janus dendrimer, that possesses a semipermeable membrane. By external addition of glucose to GOX-MPO-DS, the production of hypochlorite (-OCl), a highly potent antimicrobial, by the enzymatic cascade was demonstrated. This cascade nanoreactor yielded a potent bactericidal effect against two important multidrug resistant pathogens, Staphylococcus aureus (S. aureus) and Pseudomonas aeruginosa (P. aeruginosa), not observed for H2O2 producing nanoreactors, GOX-DS. The production of highly reactive species such as -OCl represents a harsh bactericidal approach that could also be cytotoxic to mammalian cells. This necessitates the development of strategies for activating -OCl production in a localized manner in response to a bacterial stimulus. One option of locally releasing sufficient amounts of substrate using a bacterial trigger (released toxins) was demonstrated with lipidic glucose-loaded giant unilamellar vesicles (GUVs), envisioning, e.g., implant surface modification with nanoreactors and GUVs for localized production of bactericidal agents in the presence of bacterial growth.

16.
Commun Chem ; 3: 77, 2020 Jun 12.
Article in English | MEDLINE | ID: mdl-34113722

ABSTRACT

Droplet interface bilayers (DIBs) are model membranes formed between lipid monolayer-encased water droplets in oil. Compared to conventional methods, one of the most unique properties of DIBs is that they can be connected together to generate multi-layered 'tissue-like' networks, however introducing communication pathways between these compartments typically relies on water-soluble pores that are unable to gate. Here, we show that network connectivity can instead be achieved using a water-insoluble membrane protein by successfully reconstituting a chemically activatable mutant of the mechanosensitive channel MscL into a network of DIBs. Moreover, we also show how the small molecule activator can diffuse through an open channel and across the neighbouring droplet to activate MscL present in an adjacent bilayer. This demonstration of membrane protein mediated bilayer communication could prove key toward developing the next generation of responsive bilayer networks capable of defining information flow inside a minimal tissue.

17.
Commun Chem ; 3(1): 130, 2020 Sep 17.
Article in English | MEDLINE | ID: mdl-33829115

ABSTRACT

The rapid development of nanotechnology has led to an increase in the number and variety of engineered nanomaterials in the environment. Gold nanoparticles (AuNPs) are an example of a commonly studied nanomaterial whose highly tailorable properties have generated significant interest through a wide range of research fields. In the present work, we characterise the AuNP-lipid membrane interaction by coupling qualitative data with quantitative measurements of the enthalpy change of interaction. We investigate the interactions between citrate-stabilised AuNPs ranging from 5 to 60 nm in diameter and large unilamellar vesicles acting as a model membrane system. Our results reveal the existence of two critical AuNP diameters which determine their fate when in contact with a lipid membrane. The results provide new insights into the size dependent interaction between AuNPs and lipid bilayers which is of direct relevance to nanotoxicology and to the design of NP vectors.

18.
Front Bioeng Biotechnol ; 8: 604091, 2020.
Article in English | MEDLINE | ID: mdl-33604330

ABSTRACT

In this paper, we describe the stepwise development of a cell-free protein synthesis (CFPS) platform derived from cultured Chinese hamster ovary (CHO) cells. We provide a retrospective summary of the design challenges we faced, and the optimized methods developed for the cultivation of cells and the preparation of translationally active lysates. To overcome low yields, we developed procedures to supplement two accessory proteins, GADD34 and K3L, into the reaction to prevent deactivation of the translational machinery by phosphorylation. We compared different strategies for implementing these accessory proteins including two variants of the GADD34 protein to understand the potential trade-offs between yield and ease of implementation. Addition of the accessory proteins increased yield of turbo Green Fluorescent Protein (tGFP) by up to 100-fold depending on which workflow was used. Using our optimized protocols as a guideline, users can successfully develop their own functional CHO CFPS system, allowing for broader application of mammalian CFPS.

19.
Langmuir ; 35(50): 16521-16527, 2019 12 17.
Article in English | MEDLINE | ID: mdl-31702159

ABSTRACT

Dispersions of nonlamellar lipid membrane assemblies are gaining increasing interest for drug delivery and protein therapeutic application. A key bottleneck has been the lack of rational design rules for these systems linking different lipid species and conditions to defined lattice parameters and structures. We have developed robust methods to form cubosomes (nanoparticles with porous internal structures) with water channel diameters of up to 171 Å, which are over 4 times larger than archetypal cubosome structures. The water channel diameter can be tuned via the incorporation of cholesterol and the charged lipid DOPA, DOPG, or DOPS. We have found that large molecules can be incorporated into the porous cubosome structure and that these molecules can interact with the internal cubosome membrane. This offers huge potential for accessible encapsulation and protection of biomolecules and development of confined interfacial reaction environments.


Subject(s)
Cholesterol/chemistry , Engineering , Glycerophospholipids/chemistry
20.
Proc Natl Acad Sci U S A ; 116(34): 16711-16716, 2019 08 20.
Article in English | MEDLINE | ID: mdl-31371493

ABSTRACT

To date, reconstitution of one of the fundamental methods of cell communication, the signaling pathway, has been unaddressed in the bottom-up construction of artificial cells (ACs). Such developments are needed to increase the functionality and biomimicry of ACs, accelerating their translation and application in biotechnology. Here, we report the construction of a de novo synthetic signaling pathway in microscale nested vesicles. Vesicle-cell models respond to external calcium signals through activation of an intracellular interaction between phospholipase A2 and a mechanosensitive channel present in the internal membranes, triggering content mixing between compartments and controlling cell fluorescence. Emulsion-based approaches to AC construction are therefore shown to be ideal for the quick design and testing of new signaling networks and can readily include synthetic molecules difficult to introduce to biological cells. This work represents a foundation for the engineering of multicompartment-spanning designer pathways that can be utilized to control downstream events inside an AC, leading to the assembly of micromachines capable of sensing and responding to changes in their local environment.


Subject(s)
Artificial Cells , Cell Compartmentation , Mechanotransduction, Cellular , Calcium/metabolism , Cell Communication/drug effects , Cell Compartmentation/drug effects , Chelating Agents/pharmacology , Escherichia coli Proteins/metabolism , Ion Channels/metabolism , Mechanotransduction, Cellular/drug effects , Phospholipases A2/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...