Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 28
Filter
Add more filters










Publication year range
1.
Orphanet J Rare Dis ; 19(1): 213, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38778413

ABSTRACT

BACKGROUND: Vascular anomalies caused by somatic (postzygotic) variants are clinically and genetically heterogeneous diseases with overlapping or distinct entities. The genetic knowledge in this field is rapidly growing, and genetic testing is now part of the diagnostic workup alongside the clinical, radiological and histopathological data. Nonetheless, access to genetic testing is still limited, and there is significant heterogeneity across the approaches used by the diagnostic laboratories, with direct consequences on test sensitivity and accuracy. The clinical utility of genetic testing is expected to increase progressively with improved theragnostics, which will be based on information about the efficacy and safety of the emerging drugs and future molecules. The aim of this study was to make recommendations for optimising and guiding the diagnostic genetic testing for somatic variants in patients with vascular malformations. RESULTS: Physicians and lab specialists from 11 multidisciplinary European centres for vascular anomalies reviewed the genes identified to date as being involved in non-hereditary vascular malformations, evaluated gene-disease associations, and made recommendations about the technical aspects for identification of low-level mosaicism and variant interpretation. A core list of 24 genes were selected based on the current practices in the participating laboratories, the ISSVA classification and the literature. In total 45 gene-phenotype associations were evaluated: 16 were considered definitive, 16 strong, 3 moderate, 7 limited and 3 with no evidence. CONCLUSIONS: This work provides a detailed evidence-based view of the gene-disease associations in the field of vascular malformations caused by somatic variants. Knowing both the gene-phenotype relationships and the strength of the associations greatly help laboratories in data interpretation and eventually in the clinical diagnosis. This study reflects the state of knowledge as of mid-2023 and will be regularly updated on the VASCERN-VASCA website (VASCERN-VASCA, https://vascern.eu/groupe/vascular-anomalies/ ).


Subject(s)
Genetic Testing , Vascular Malformations , Humans , Genetic Testing/methods , Vascular Malformations/genetics , Vascular Malformations/diagnosis , Vascular Malformations/pathology , Genetic Association Studies
2.
Dermatology ; 2024 Apr 08.
Article in English | MEDLINE | ID: mdl-38588653

ABSTRACT

BACKGROUND: Autosomal recessive congenital ichthyoses (ARCI) are a clinically heterogeneous group of keratinization disorders characterized by generalized skin scaling due to mutations in at least 12 genes. The aim of our study was to assess disease severity, phenotypic and ultrastructural features and to evaluate their association with genetic findings in ARCI patients. METHODS: Clinical signs and symptoms, and disease severity were scored in a single-center series of patients with a genetic diagnosis of ARCI. Skin ultrastructural findings were reviewed. RESULTS: Seventy-four consecutive patients (mean age 11.0 years, range 0.1-48.8) affected with lamellar ichthyosis (50/74, 67.5%), congenital ichthyosiform erythroderma (18/74, 24.3%), harlequin ichthyosis (two/74, 2.7%), and other minor ARCI subtypes (four/74, 5.4%) were enrolled. Mutated genes were: TGM1 in 18/74 (24.3%) patients, ALOX12B in 18/74 (24.3%), CYP4F22 in 12/74 (16.2%), ABCA12 in nine/74 (12.2%), ALOXE3 in seven/74 (9.5%), NIPAL4 in seven/74 (9.5%), and CERS3, PNPLA1 and SDR9C7 in one patient each (1.4%). Twenty-five previously undescribed mutations in the different ARCI causative genes, as well as two microduplications in TGM1, and two microdeletions in CYP4F22 and NIPAL4 were identified. The mean ichthyosis severity score in TGM1 and ABCA12-mutated patients was significantly higher than in all other mutated genes, while the lowest score was observed in CYP4F22-mutated patients. Alopecia, ectropion, and eclabium were significantly associated with TGM1 and ABCA12 mutations, and large, thick and brownish scales with TGM1 mutations. Among specific phenotypic features, psoriasis-like lesions as well as a trunk reticulate scale pattern and striated keratoderma were present in NIPAL4-mutated patients. Ultrastructural data available for 56 patients showed a 100% specificity of cholesterol clefts for TGM1-mutated cases, and revealed abnormal lamellar bodies in SDR9C7 and CERS3 patients. CONCLUSION: Our study expands the phenotypic and genetic characterization of ARCI by the description of statistically significant associations between disease severity, specific clinical signs, and different mutated genes. Finally, we highlighted the presence of psoriasis-like lesions in NIPAL4-ARCI patients as a novel phenotypic feature with diagnostic and possible therapeutic implications.

3.
Eur J Hum Genet ; 2024 Mar 25.
Article in English | MEDLINE | ID: mdl-38528056

ABSTRACT

Autosomal dominant Kabuki syndrome (KS) is a rare multiple congenital anomalies/neurodevelopmental disorder caused by heterozygous inactivating variants or structural rearrangements of the lysine-specific methyltransferase 2D (KMT2D) gene. While it is often recognizable due to a distinctive gestalt, the disorder is clinically variable, and a phenotypic scoring system has been introduced to help clinicians to reach a clinical diagnosis. The phenotype, however, can be less pronounced in some patients, including those carrying postzygotic mutations. The full spectrum of pathogenic variation in KMT2D has not fully been characterized, which may hamper the clinical classification of a portion of these variants. DNA methylation (DNAm) profiling has successfully been used as a tool to classify variants in genes associated with several neurodevelopmental disorders, including KS. In this work, we applied a KS-specific DNAm signature in a cohort of 13 individuals with KMT2D VUS and clinical features suggestive or overlapping with KS. We succeeded in correctly classifying all the tested individuals, confirming diagnosis for three subjects and rejecting the pathogenic role of 10 VUS in the context of KS. In the latter group, exome sequencing allowed to identify the genetic cause underlying the disorder in three subjects. By testing five individuals with postzygotic pathogenic KMT2D variants, we also provide evidence that DNAm profiling has power to recognize pathogenic variants at different levels of mosaicism, identifying 15% as the minimum threshold for which DNAm profiling can be applied as an informative diagnostic tool in KS mosaics.

4.
Genet Med ; 25(7): 100859, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37092538

ABSTRACT

PURPOSE: The study aimed to clinically and molecularly characterize the neurodevelopmental disorder associated with heterozygous de novo variants in CNOT9. METHODS: Individuals were clinically examined. Variants were identified using exome or genome sequencing. These variants were evaluated using in silico predictions, and their functional relevance was further assessed by molecular models and research in the literature. The variants have been classified according to the criteria of the American College of Medical Genetics. RESULTS: We report on 7 individuals carrying de novo missense variants in CNOT9, p.(Arg46Gly), p.(Pro131Leu), and p.(Arg227His), and, recurrent in 4 unrelated individuals, p.(Arg292Trp). All affected persons have developmental delay/intellectual disability, with 5 of them showing seizures. Other symptoms include muscular hypotonia, facial dysmorphism, and behavioral abnormalities. Molecular modeling predicted that the variants are damaging and would lead to reduced protein stability or impaired recognition of interaction partners. Functional analyses in previous studies showed a pathogenic effect of p.(Pro131Leu) and p.(Arg227His). CONCLUSION: We propose CNOT9 as a novel gene for neurodevelopmental disorder and epilepsy.


Subject(s)
Epilepsy , Intellectual Disability , Neurodevelopmental Disorders , Humans , Epilepsy/genetics , Intellectual Disability/genetics , Intellectual Disability/pathology , Mutation, Missense/genetics , Neurodevelopmental Disorders/genetics , Neurodevelopmental Disorders/pathology , Phenotype , Seizures/genetics
5.
Am J Hum Genet ; 110(5): 790-808, 2023 05 04.
Article in English | MEDLINE | ID: mdl-37071997

ABSTRACT

SRSF1 (also known as ASF/SF2) is a non-small nuclear ribonucleoprotein (non-snRNP) that belongs to the arginine/serine (R/S) domain family. It recognizes and binds to mRNA, regulating both constitutive and alternative splicing. The complete loss of this proto-oncogene in mice is embryonically lethal. Through international data sharing, we identified 17 individuals (10 females and 7 males) with a neurodevelopmental disorder (NDD) with heterozygous germline SRSF1 variants, mostly de novo, including three frameshift variants, three nonsense variants, seven missense variants, and two microdeletions within region 17q22 encompassing SRSF1. Only in one family, the de novo origin could not be established. All individuals featured a recurrent phenotype including developmental delay and intellectual disability (DD/ID), hypotonia, neurobehavioral problems, with variable skeletal (66.7%) and cardiac (46%) anomalies. To investigate the functional consequences of SRSF1 variants, we performed in silico structural modeling, developed an in vivo splicing assay in Drosophila, and carried out episignature analysis in blood-derived DNA from affected individuals. We found that all loss-of-function and 5 out of 7 missense variants were pathogenic, leading to a loss of SRSF1 splicing activity in Drosophila, correlating with a detectable and specific DNA methylation episignature. In addition, our orthogonal in silico, in vivo, and epigenetics analyses enabled the separation of clearly pathogenic missense variants from those with uncertain significance. Overall, these results indicated that haploinsufficiency of SRSF1 is responsible for a syndromic NDD with ID due to a partial loss of SRSF1-mediated splicing activity.


Subject(s)
Intellectual Disability , Neurodevelopmental Disorders , Child , Female , Male , Developmental Disabilities/genetics , Developmental Disabilities/complications , Haploinsufficiency/genetics , Intellectual Disability/pathology , Mutation, Missense/genetics , Neurodevelopmental Disorders/genetics , Phenotype , Humans
7.
Genes (Basel) ; 14(1)2023 01 01.
Article in English | MEDLINE | ID: mdl-36672860

ABSTRACT

Cornelia de Lange Syndrome (CdLS) is a rare genetic disorder that affects many organs. The diagnosis of this condition is primarily clinical and it can be confirmed by molecular analysis of the genes known to cause this disease, although about 30% of CdLS patients are without a genetic diagnosis. Here we report clinical and genetic findings of a patient with CdLS type 4, a syndrome of which the clinical features of only 30 patients have been previously described in the literature. The index patient presented with clinical characteristics previously associated with CdLS type 4 (short nose, thick eyebrow, global development delay, synophrys, microcephaly, weight < 2DS, small hands, height < 2DS). She also presented cardiac anomalies, cleft palate and laryngomalacia, which was never described before. The index patient was diagnosed with a novel de novo RAD21 variant (c.1722_1723delTG, p.Gly575SerfsTer2): segregation analysis, bioinformatic analysis, population data and in silico structural modelling indicate the pathogenicity of the novel variant. This report summarizes previously reported clinical manifestations of CdLS type 4 but also highlights new clinical symptoms, which will aid correct counselling of future CdLS type 4 cases.


Subject(s)
Cleft Palate , De Lange Syndrome , Hypertrichosis , Female , Humans , De Lange Syndrome/diagnosis , De Lange Syndrome/genetics , Cell Cycle Proteins/genetics , Phenotype , DNA-Binding Proteins/genetics
8.
Front Genet ; 13: 924362, 2022.
Article in English | MEDLINE | ID: mdl-35910214

ABSTRACT

Fibrillin proteins are extracellular matrix glycoproteins assembling into microfibrils. FBN1, FBN2, and FBN3 encode the human fibrillins and mutations in FBN1 and FBN2 cause connective tissue disorders called fibrillinopathies, affecting cardiovascular, dermal, skeletal, and ocular tissues. Recently, mutations of the less characterized fibrillin family member, FBN3, have been associated in a single family with Bardet-Biedl syndrome (BBS). Here, we report on a patient born from two first cousins and affected by developmental delay, cognitive impairment, obesity, dental and genital anomalies, and brachydactyly/syndactyly. His phenotype was very similar to that reported in the previous FBN3-mutated family and fulfilled BBS clinical diagnostic criteria, although lacking polydactyly, the most recurrent clinical feature, as the previous siblings described. A familial SNP-array and proband's WES were performed prioritizing candidate variants on the sole patient's runs of homozygosity. This analysis disclosed a novel homozygous missense variant in FBN3 (NM_032447:c.5434A>G; NP_115823:p.Ile1812Val; rs115948457), inherited from the heterozygous parents. This study further supports that FBN3 is a candidate gene for a BBS-like syndrome characterized by developmental delay, cognitive impairment, obesity, dental, genital, and skeletal anomalies. Anyway, additional studies are necessary to investigate the exact role of the gene and possible interactions between FBN3 and BBS proteins.

9.
Genes Chromosomes Cancer ; 61(12): 740-746, 2022 12.
Article in English | MEDLINE | ID: mdl-35999193

ABSTRACT

Cutaneous skeletal hypophosphatemia syndrome (CSHS) is caused by somatic mosaic NRAS variants and characterized by melanocytic/sebaceous naevi, eye, and brain malformations, and FGF23-mediated hypophosphatemic rickets. The MEK inhibitor Trametinib, acting on the RAS/MAPK pathway, is a candidate for CSHS therapy. A 4-year-old boy with seborrheic nevus, eye choristoma, multiple hamartomas, brain malformation, pleural lymphangioma and chylothorax developed severe hypophosphatemic rickets unresponsive to phosphate supplementation. The c.182A > G;p.(Gln61Arg) somatic NRAS variant found in DNA from nevus biopsy allowed diagnosing CSHS. We administered Trametinib for 15 months investigating the transcriptional effects at different time points by whole blood RNA-seq. Treatment resulted in prompt normalization of phosphatemia and phosphaturia, catch-up growth, chylothorax regression, improvement of bone mineral density, reduction of epidermal nevus and hamartomas. Global RNA sequencing on peripheral blood mononucleate cells showed transcriptional changes under MEK inhibition consisting in a strong sustained downregulation of signatures related to RAS/MAPK, PI3 kinase, WNT and YAP/TAZ pathways, reverting previously defined transcriptomic signatures. CSHS was effectively treated with a MEK inhibitor with almost complete recovery of rickets and partial regression of the phenotype. We identified "core" genes modulated by MEK inhibition potentially serving as surrogate markers of Trametinib action.


Subject(s)
Chylothorax , Hamartoma , Hypophosphatemia , Nevus, Pigmented , Nevus , Rickets, Hypophosphatemic , Skin Neoplasms , DNA , GTP Phosphohydrolases/genetics , Humans , Hypophosphatemia/diagnosis , Hypophosphatemia/genetics , Membrane Proteins/genetics , Mitogen-Activated Protein Kinase Kinases , Nevus, Pigmented/diagnosis , Nevus, Pigmented/genetics , Nevus, Pigmented/metabolism , Phosphates , Phosphatidylinositol 3-Kinases , Rickets, Hypophosphatemic/genetics , Skin Neoplasms/genetics , Syndrome
10.
Biomedicines ; 10(6)2022 Jun 20.
Article in English | MEDLINE | ID: mdl-35740480

ABSTRACT

Sporadic vascular malformations (VMs) are a large group of disorders of the blood and lymphatic vessels caused by somatic mutations in several genes-mainly regulating the RAS/MAPK/ERK and PI3K/AKT/mTOR pathways. We performed a cross-sectional study of 43 patients affected with sporadic VMs, who had received molecular diagnosis by high-depth targeted next-generation sequencing in our center. Clinical and imaging features were correlated with the sequence variants identified in lesional tissues. Six of nine patients with capillary malformation and overgrowth (CMO) carried the recurrent GNAQ somatic mutation p.Arg183Gln, while two had PIK3CA mutations. Unexpectedly, 8 of 11 cases of diffuse CM with overgrowth (DCMO) carried known PIK3CA mutations, and the remaining 3 had pathogenic GNA11 variants. Recurrent PIK3CA mutations were identified in the patients with megalencephaly-CM-polymicrogyria (MCAP), CLOVES, and Klippel-Trenaunay syndrome. Interestingly, PIK3CA somatic mutations were associated with hand/foot anomalies not only in MCAP and CLOVES, but also in CMO and DCMO. Two patients with blue rubber bleb nevus syndrome carried double somatic TEK mutations, two of which were previously undescribed. In addition, a novel sporadic case of Parkes Weber syndrome (PWS) due to an RASA1 mosaic pathogenic variant was described. Finally, a girl with a mild PWS and another diagnosed with CMO carried pathogenic KRAS somatic variants, showing the variability of phenotypic features associated with KRAS mutations. Overall, our findings expand the clinical and molecular spectrum of sporadic VMs, and show the relevance of genetic testing for accurate diagnosis and emerging targeted therapies.

11.
Genet Med ; 24(8): 1753-1760, 2022 08.
Article in English | MEDLINE | ID: mdl-35579625

ABSTRACT

PURPOSE: Genome-wide sequencing is increasingly being performed during pregnancy to identify the genetic cause of congenital anomalies. The interpretation of prenatally identified variants can be challenging and is hampered by our often limited knowledge of prenatal phenotypes. To better delineate the prenatal phenotype of Coffin-Siris syndrome (CSS), we collected clinical data from patients with a prenatal phenotype and a pathogenic variant in one of the CSS-associated genes. METHODS: Clinical data was collected through an extensive web-based survey. RESULTS: We included 44 patients with a variant in a CSS-associated gene and a prenatal phenotype; 9 of these patients have been reported before. Prenatal anomalies that were frequently observed in our cohort include hydrocephalus, agenesis of the corpus callosum, hypoplastic left heart syndrome, persistent left vena cava, diaphragmatic hernia, renal agenesis, and intrauterine growth restriction. Anal anomalies were frequently identified after birth in patients with ARID1A variants (6/14, 43%). Interestingly, pathogenic ARID1A variants were much more frequently identified in the current prenatal cohort (16/44, 36%) than in postnatal CSS cohorts (5%-9%). CONCLUSION: Our data shed new light on the prenatal phenotype of patients with pathogenic variants in CSS genes.


Subject(s)
Hand Deformities, Congenital , Intellectual Disability , Micrognathism , Abnormalities, Multiple , Chromosomal Proteins, Non-Histone/genetics , Face/abnormalities , Genetic Association Studies , Hand Deformities, Congenital/genetics , Humans , Intellectual Disability/genetics , Intellectual Disability/pathology , Micrognathism/genetics , Neck/abnormalities , Phenotype
12.
J Neurosurg Sci ; 2022 Apr 13.
Article in English | MEDLINE | ID: mdl-35416451

ABSTRACT

BACKGROUND: Cerebral cavernous malformations (CCMs) are low-flow vascular malformations made up of dilated vascular spaces without intervening parenchyma that can occur throughout the central nervous system. CCMs can occur sporadically or in familial forms. Presentation is diverse, ranging from asymptomatic discoveries to drug-resistant epilepsy and hemorrhages. METHODS: We describe the surgical management of CCMs in pediatric patients at Bambino Gesù Children's Hospital in Rome over the last 10 years. The cases have been stratified based on the clinical presentation and the relevant literature is discussed accordingly. RESULTS: We discuss the rationale and technique used in these cases based on their presentation, as well as the generally positive outcomes we achieved with early surgical management, use of intra-operative ultrasound (ioUS) and intraoperative neuromonitoring. CONCLUSIONS: Surgical management of pediatric CCMs is a safe and effective strategy, low rates of postoperative morbidity and partial resection were observed.

14.
J Pediatr Genet ; 10(4): 292-299, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34849274

ABSTRACT

The aim of this study was to evaluate the relationship between neurodevelopmental disorders, brain anomalies, and copy number variations (CNVs) and to estimate the diagnostic potential of cytogenomical microarray analysis (CMA) in individuals neuroradiologically characterized with intellectual developmental disorders (IDDs) isolated or associated with autism spectrum disorders (ASDs) and epilepsy (EPI), all of which were identified as a "synaptopathies." We selected patients who received CMA and brain magnetic resonance imaging (MRI) over a 7-year period. We divided them into four subgroups: IDD, IDD + ASD, IDD + EPI, and IDD + ASD + EPI. The diagnostic threshold of CMA was 16%. The lowest detection rate for both CMA and brain anomalies was found in IDD + ASD, while MRI was significantly higher in IDD and IDD + EPI subgroups. CMA detection rate was significantly higher in patients with brain anomalies, so CMA may be even more appropriate in patients with pathological MRI, increasing the diagnostic value of the test. Conversely, positive CMA in IDD patients should require an MRI assessment, which is more often associated with brain anomalies. Posterior fossa anomalies, both isolated and associated with other brain anomalies, showed a significantly higher rate of CMA positive results and of pathogenic CNVs. In the next-generation sequencing era, our study confirms once again the relevant diagnostic output of CMA in patients with IDD, either isolated or associated with other comorbidities. Since more than half of the patients presented brain anomalies in this study, we propose that neuroimaging should be performed in such cases, particularly in the presence of genomic imbalances.

15.
Clin Case Rep ; 9(11): e05108, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34853685

ABSTRACT

A child who comes to our attention for the appearance of erythematous, scaly lesions localized to the upper and lower limbs for 2 months. Histological features suggested ichthyosiform disease and concomitant mutations in the SPINK5 and FLG2 genes confirmed Netherton syndrome with severe atopic manifestations.

16.
Front Pediatr ; 9: 730393, 2021.
Article in English | MEDLINE | ID: mdl-34692608

ABSTRACT

Vascular birthmarks are common in neonates (prevalence: 20-30%) and mostly incidental findings sometimes with spontaneous regression (salmon patch and nevus simplex). Capillary malformations are found in about 1% and infantile hemangiomas are found in 4% of mature newborns. Vascular malformations are classified according to their most prominent vessel type. The term "capillary malformation" (port wine stain) includes a wide range of vascular lesions with different characteristics; they may be isolated or part of specific syndromic conditions. Part of the infantile hemangiomas and of the vascular malformations may require treatment for functional or cosmetic reasons, and in rare cases, investigations are also necessary as they represent a clue for the diagnosis of complex vascular malformation or tumors associated with extracutaneous abnormalities. Complex vascular malformations are mostly mosaicism due to early somatic mutations. Genetic advances have led to identify the main pathogenic pathways involved in this disease group. Diffuse capillary malformation with overgrowth, Klippel-Trenaunay syndrome, CLAPO syndrome, CLOVES syndrome, and megalencephaly-capillary malformation belong to the PIK3CA-related overgrowth. Capillary malformation-arteriovenous malformation underlies a fast-flow vascular malformation, sometimes manifesting as Parkes-Weber syndrome. Recognition of these different types of capillary vascular stains is sometimes difficult; however, associated findings may orient the clinicians while genetic testing may confirm the diagnosis. Lymphatic malformation frequently manifests as large masses that compress and/or infiltrate the surrounding tissues, representing a neonatal emergency when airways are involved. Infantile hemangiomas may cause functional and/or permanent esthetical damage, depending on their localization (such as periorbital area, lip, nose); large (more than 5 cm) infantile hemangiomas with a segmental distribution can be associated with obstruction or malformations of the underneath organs with complications: PHACE syndrome, LUMBAR/SACRAL syndrome, and beard infantile hemangioma. In our review, we discuss controversies regarding the international classification and emerging concepts in the field of vascular anomalies. Finally, we discuss potential developments of new, non-invasive diagnostic techniques and repurposing of target therapies from oncology. Complex and/or life-threatening vascular tumors and malformations are extremely rare events and they represent a considerable therapeutic challenge. Early recognition of clinical signs suggestive for a specific disease may improve therapeutic outcomes and avoid severe complications.

17.
Am J Med Genet A ; 185(12): 3728-3739, 2021 12.
Article in English | MEDLINE | ID: mdl-34346154

ABSTRACT

Kinesin super family (KIF) genes encode motor kinesins, a family of evolutionary conserved proteins, involved in intracellular trafficking of various cargoes. These proteins are critical for various physiological processes including neuron function and survival, ciliary function and ciliogenesis, and cell-cycle progression. Recent evidence suggests that alterations in motor kinesin genes can lead to a variety of human diseases, including monogenic disorders. Neuropathies, impaired higher brain functions, structural brain abnormalities and multiple congenital anomalies (i.e., renal, urogenital, and limb anomalies) can result from pathogenic variants in many KIF genes. We expand the phenotype associated with KIF4A variants from developmental delay and intellectual disability with or without epilepsy to a congenital anomaly phenotype with hydrocephalus and various brain anomalies at the more severe end of phenotypic manifestations. Additional anomalies of the kidneys and urinary tract, congenital lymphedema, eye, and dental anomalies seem to be variably associated and overlap with clinical signs observed in other kinesinopathies. Caution still applies to missense variants, but hopefully, future work will further establish genotype-phenotype correlations in a larger number of patients and functional studies may give further insights into the complex function of KIF4A.


Subject(s)
Abnormalities, Multiple/genetics , Brain/metabolism , Kinesins/genetics , Urogenital Abnormalities/genetics , Vesico-Ureteral Reflux/genetics , Abnormalities, Multiple/pathology , Brain/abnormalities , Brain/pathology , Epilepsy/genetics , Epilepsy/pathology , Female , Genetic Association Studies , Humans , Intellectual Disability/genetics , Intellectual Disability/pathology , Male , Mutation, Missense/genetics , Neurodevelopmental Disorders/genetics , Neurodevelopmental Disorders/pathology , Neurons/metabolism , Neurons/pathology , Phenotype , Urogenital Abnormalities/pathology , Vesico-Ureteral Reflux/pathology
18.
Mol Genet Genomic Med ; 9(9): e1612, 2021 09.
Article in English | MEDLINE | ID: mdl-34342180

ABSTRACT

BACKGROUND: Cornelia de Lange syndrome (CdLS) is a rare and clinically variable syndrome characterized by growth impairment, multi-organ anomalies, and a typical set of facial dysmorphisms. Here we describe a 2-year-old female child harboring a novel de novo missense variant in HDAC8, whose phenotypical score, according to the recent consensus on CdLS clinical diagnostic criteria, allowed the diagnosis of a non-classic CdLS. METHODS: Clinical exome sequencing was performed on the trio, identifying a de novo heterozygous variant in HDAC8 (NM_018486; c. 356C>G p.Thr119Arg). Molecular modeling was performed to evaluate putative functional consequence of the HDAC8 protein. RESULTS: The variant HDAC8 c.356C>G is classified as pathogenic following the ACMG (American College of Medical Genetics and Genomics)/AMP (Association for Molecular Pathology) guidelines. By molecular modeling, we confirmed the deleterious effect of this variant, since the amino acid change compromises the conformational flexibility of the HDAC8 loop required for optimal catalytic function. CONCLUSION: We described a novel Thr119Arg mutation in HDAC8 in a patient displaying the major phenotypic traits of the CdLS. Our results suggest that a modest change outside an active site is capable of triggering global structural changes that propagate through the protein scaffold to the catalytic site, creating de facto haploinsufficiency.


Subject(s)
De Lange Syndrome/genetics , Histone Deacetylases/genetics , Mutation, Missense , Repressor Proteins/genetics , Child, Preschool , De Lange Syndrome/pathology , Female , Histone Deacetylases/chemistry , Humans , Protein Conformation , Repressor Proteins/chemistry
19.
Eur J Dermatol ; 31(3): 342-350, 2021 Jun 01.
Article in English | MEDLINE | ID: mdl-34309520

ABSTRACT

R-spondin (RSPO)1 is a fibroblast-secreted protein that belongs to the R-spondin protein family which is essential for reproductive organ development, epithelial stem cell renewal and cancer induction or suppression. RSPO1 gene mutations cause palmoplantar hyperkeratosis with squamous cell carcinoma (SCC) of the skin, 46XX sex reversal and true hermaphroditism. To characterize RSPO1-deficient skin fibroblasts derived from two patients with mutations in RSPO1, with palmoplantar hyperkeratosis, recurrent SCC and 46XX sex reversal, to provide further insight into disease-related skin tumourigenesis. Fibroblast cultures from non-tumoural palmoplantar skin biopsies were established to evaluate features and properties that may be altered at cancer onset, i.e. proliferation, extracellular matrix contraction and invasion, as well as TGF-ß and matrix metalloproteinase (MMP) secretion. Fibroblasts demonstrated increased proliferative potential in vitro, a high level of collagen contraction and invasion by SCC cells, release of high levels of pro-inflammatory and pro-fibrotic TGF-ß, and increased expression of MMP1 and MMP3. Analysis of the expression of selected proteins associated with RSPO1-activated pathways confirmed sustained activation of the TGF-ß signalling pathway and indicated a loss of TGF-ß inhibitory feedback. Also, treatment of fibroblasts with a recombinant RSPO1 protein aggravated this pro-inflammatory phenotype, suggesting caution in designing therapeutic strategies based on restoration of protein function. Our findings indicate that fibroblasts from RSPO1-mutated patients behave similarly to cancer-associated fibroblasts. Chronic inflammation and fibrotic changes in palmoplantar skin may play a role in SCC development and recurrence, possibly by irreversibly activating the tumourigenic phenotype of fibroblasts.


Subject(s)
Fibroblasts/pathology , Keratoderma, Palmoplantar/pathology , Mutation , Thrombospondins/genetics , Aged , Carcinoma, Squamous Cell/genetics , Carcinoma, Squamous Cell/pathology , Cell Proliferation , Cells, Cultured , Fibroblasts/metabolism , Humans , Male , Matrix Metalloproteinase 1/metabolism , Matrix Metalloproteinase 3/metabolism , Phenotype , Signal Transduction , Skin/pathology , Skin Neoplasms/genetics , Skin Neoplasms/pathology , Transforming Growth Factor beta/metabolism
20.
Genes (Basel) ; 12(7)2021 06 24.
Article in English | MEDLINE | ID: mdl-34202629

ABSTRACT

We report on two siblings suffering from different pathogenic conditions, born to consanguineous parents. A multigene panel for brain malformations and microcephaly identified the homozygous splicing variant NM_005886.3:c.1416+1del in the KATNB1 gene in the older sister. On the other hand, exome sequencing revealed the homozygous frameshift variant NM_005245.4:c.9729del in the FAT1 gene in the younger sister, who had a more complex phenotype: in addition to bilateral anophthalmia and heart defects, she showed a right split foot with 4 toes, 5 metacarpals, second toe duplication and preaxial polydactyly on the right hand. These features have been never reported before in patients with pathogenic FAT1 variants and support the role of this gene in the development of limb buds. Notably, each parent was heterozygous for both of these variants, which were ultra-rare and rare, respectively. This study raises awareness about the value of using whole exome/genome sequencing rather than targeted gene panels when testing affected offspring born to consanguineous couples. In this way, exomic data from the parents are also made available for carrier screening, to identify heterozygous pathogenetic and likely pathogenetic variants in genes responsible for other recessive conditions, which may pose a risk for subsequent pregnancies.


Subject(s)
Adenosine Triphosphatases/genetics , Cadherins/genetics , Lissencephaly/genetics , Microcephaly/genetics , Polydactyly/genetics , Thumb/abnormalities , Brain/abnormalities , Brain/diagnostic imaging , Brain/pathology , Child, Preschool , Consanguinity , Exome/genetics , Female , Frameshift Mutation/genetics , Genetic Predisposition to Disease , Heterozygote , Humans , Infant , Infant, Newborn , Lissencephaly/diagnostic imaging , Lissencephaly/pathology , Microcephaly/diagnostic imaging , Microcephaly/pathology , Pedigree , Phenotype , Polydactyly/diagnostic imaging , Polydactyly/pathology , Siblings , Thumb/diagnostic imaging , Thumb/pathology , Exome Sequencing
SELECTION OF CITATIONS
SEARCH DETAIL
...