Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Proc Natl Acad Sci U S A ; 119(5)2022 02 01.
Article in English | MEDLINE | ID: mdl-35091472

ABSTRACT

Microbes have been coevolving with their host for millions of years, exploiting host resources to their own benefit. We show that viral and bacterial pathogens convergently evolved to hijack cellular mitogen-activated protein kinase (MAPK) p90-ribosomal S6-kinases (RSKs). Theiler's virus leader (L) protein binds RSKs and prevents their dephosphorylation, thus maintaining the kinases active. Recruitment of RSKs enables L-protein-mediated inhibition of eukaryotic translation initiation factor 2 alpha kinase 2 (EIF2AK2 or PKR) and stress granule formation. Strikingly, ORF45 protein of Kaposi's sarcoma-associated herpesvirus (KSHV) and YopM protein of Yersinia use the same peptide motif as L to recruit and activate RSKs. All three proteins interact with a conserved surface-located loop of RSKs, likely acting as an allosteric regulation site. Some unrelated viruses and bacteria thus evolved to harness RSKs in a common fashion, yet to target distinct aspects of innate immunity. As documented for Varicella zoster virus ORF11, additional pathogens likely evolved to hijack RSKs, using a similar short linear motif.


Subject(s)
Host Microbial Interactions/physiology , Ribosomal Protein S6 Kinases, 90-kDa/genetics , Bacteria/pathogenicity , Bacterial Infections/genetics , Bacterial Infections/metabolism , Biological Evolution , Cell Line , Gene Expression Regulation, Viral/genetics , Host Microbial Interactions/genetics , Humans , Immediate-Early Proteins/genetics , MAP Kinase Signaling System/physiology , Mitogen-Activated Protein Kinase Kinases/metabolism , Ribosomal Protein S6 Kinases, 90-kDa/metabolism , Virus Diseases/genetics , Virus Diseases/metabolism , Virus Replication/physiology , Viruses/pathogenicity
2.
Front Microbiol ; 12: 757238, 2021.
Article in English | MEDLINE | ID: mdl-34759908

ABSTRACT

Cells respond to viral infections through sensors that detect non-self-molecules, and through effectors, which can have direct antiviral activities or adapt cell physiology to limit viral infection and propagation. Eukaryotic translation initiation factor 2 alpha kinase 2, better known as PKR, acts as both a sensor and an effector in the response to viral infections. After sensing double-stranded RNA molecules in infected cells, PKR self-activates and majorly exerts its antiviral function by blocking the translation machinery and inducing apoptosis. The antiviral potency of PKR is emphasized by the number of strategies developed by viruses to antagonize the PKR pathway. In this review, we present an update on the diversity of such strategies, which range from preventing double-stranded RNA recognition upstream from PKR activation, to activating eIF2B downstream from PKR targets.

3.
Sci Rep ; 11(1): 9188, 2021 04 28.
Article in English | MEDLINE | ID: mdl-33911136

ABSTRACT

Eukaryotic translation initiation factor 2 alpha kinase 2 (EIF2AK2), better known as PKR, plays a key role in the response to viral infections and cellular homeostasis by regulating mRNA translation. Upon binding dsRNA, PKR is activated through homodimerization and subsequent autophosphorylation on residues Thr446 and Thr451. In this study, we identified a novel PKR phosphorylation site, Ser6, located 3 amino acids upstream of the first double-stranded RNA binding motif (DRBM1). Another Ser residue occurs in PKR at position 97, the very same position relative to the DRBM2. Ser or Thr residues also occur 3 amino acids upstream DRBMs of other proteins such as ADAR1 or DICER. Phosphoinhibiting mutations (Ser-to-Ala) introduced at Ser6 and Ser97 spontaneously activated PKR. In contrast, phosphomimetic mutations (Ser-to-Asp) inhibited PKR activation following either poly (I:C) transfection or virus infection. These mutations moderately affected dsRNA binding or dimerization, suggesting a model where negative charges occurring at position 6 and 97 tighten the interaction of DRBMs with the kinase domain, thus keeping PKR in an inactive closed conformation even in the presence of dsRNA. This study provides new insights on PKR regulation mechanisms and identifies Ser6 and Ser97 as potential targets to modulate PKR activity for therapeutic purposes.


Subject(s)
Double-Stranded RNA Binding Motif , Serine/genetics , eIF-2 Kinase/genetics , eIF-2 Kinase/metabolism , Alanine/genetics , Amino Acid Substitution , Cardiovirus Infections/metabolism , HeLa Cells , Host-Pathogen Interactions , Humans , Mutation , Phosphorylation , Protein Multimerization , RNA-Binding Proteins/metabolism , Serine/chemistry , Theilovirus/pathogenicity
4.
J Virol ; 93(19)2019 10 01.
Article in English | MEDLINE | ID: mdl-31292248

ABSTRACT

Leader (L) proteins encoded by cardioviruses are multifunctional proteins that contribute to innate immunity evasion. L proteins of Theiler's murine encephalomyelitis virus (TMEV), Saffold virus (SAFV), and encephalomyocarditis virus (EMCV) were reported to inhibit stress granule assembly in infected cells. Here, we show that TMEV L can act at two levels in the stress granule formation pathway: on the one hand, it can inhibit sodium arsenite-induced stress granule assembly without preventing eIF2α phosphorylation and, thus, acts downstream of eIF2α; on the other hand, it can inhibit eucaryotic translation initiation factor 2 alpha kinase 2 (PKR) activation and the consequent PKR-mediated eIF2α phosphorylation. Interestingly, coimmunostaining experiments revealed that PKR colocalizes with viral double-stranded RNA (dsRNA) in cells infected with L-mutant viruses but not in cells infected with the wild-type virus. Furthermore, PKR coprecipitated with dsRNA from cells infected with L-mutant viruses significantly more than from cells infected with the wild-type virus. These data strongly suggest that L blocks PKR activation by preventing the interaction between PKR and viral dsRNA. In infected cells, L also rendered PKR refractory to subsequent activation by poly(I·C). However, no interaction was observed between L and either dsRNA or PKR. Taken together, our results suggest that, unlike other viral proteins, L indirectly acts on PKR to negatively regulate its responsiveness to dsRNA.IMPORTANCE The leader (L) protein encoded by cardioviruses is a very short multifunctional protein that contributes to evasion of the host innate immune response. This protein notably prevents the formation of stress granules in infected cells. Using Theiler's virus as a model, we show that L proteins can act at two levels in the stress response pathway leading to stress granule formation, the most striking one being the inhibition of eucaryotic translation initiation factor 2 alpha kinase 2 (PKR) activation. Interestingly, the leader protein appears to inhibit PKR via a novel mechanism by rendering this kinase unable to detect double-stranded RNA, its typical activator. Unlike other viral proteins, such as influenza virus NS1, the leader protein appears to interact with neither PKR nor double-stranded RNA, suggesting that it acts indirectly to trigger the inhibition of the kinase.


Subject(s)
Enzyme Activation , Host-Pathogen Interactions , Immune Evasion , Theilovirus/physiology , Viral Proteins/metabolism , eIF-2 Kinase/antagonists & inhibitors , Animals , Cell Line , Humans , Protein Binding , RNA, Double-Stranded/metabolism , RNA, Viral/metabolism
5.
J Virol ; 91(15)2017 08 01.
Article in English | MEDLINE | ID: mdl-28539441

ABSTRACT

Polyamines, which are small positively charge molecules present in all cells, play important roles in the replication of DNA and RNA viruses. Chikungunya virus (CHIKV) relies on polyamines for translation of the viral genome upon viral entry, and pharmacological depletion of polyamines limits viral replication. However, the potential development of antiviral resistance necessitates a better understanding of how polyamines function and can be targeted via compounds that alter polyamine levels. We have isolated CHIKV that is resistant to polyamine depletion and contains two mutations in the nonstructural protein 1 (nsP1)-coding region in combination with a mutation to the opal stop codon preceding nsP4. These mutations, in addition to promoting viral replication in polyamine-depleted cells, confer enhanced viral replication in vitro and in vivo The nsP1 mutations enhance membrane binding and methyltransferase activities, while the stop codon mutation allows increased downstream translation. These mutations, when combined, enhance viral fitness, but individual mutants are attenuated in mosquitoes. Together, our results suggest that CHIKV can evolve resistance to polyamine depletion and that pharmaceuticals targeting the polyamine biosynthetic pathway may be best used in combination with other established antivirals to mitigate the development of resistance.IMPORTANCE Chikungunya virus is a mosquito-borne virus that has infected millions worldwide. Its expansion into the Americas and rapid adaptation to new mosquito hosts present a serious threat to human health, which we can combat with the development of antiviral therapies as well as understanding how these viruses will mutate when exposed to antiviral therapies. Targeting polyamines, small positively charged molecules in the cell, may be a potential strategy against RNA viruses, including chikungunya virus. Here, we have described a virus that is resistant to polyamine depletion and has increased fitness in cells and in full organisms. Mutations in viral genome capping machinery, membrane binding activity, and a stop codon arise, and their altered activities enhance replication in the absence of polyamines. These results highlight strategies by which chikungunya virus can overcome polyamine depletion and emphasize continued research on developing improved antiviral therapies.


Subject(s)
Chikungunya virus/physiology , Polyamines/metabolism , Viral Nonstructural Proteins/metabolism , Virus Replication , Animals , Chikungunya virus/genetics , Chikungunya virus/growth & development , Codon, Terminator , Culicidae/virology , DNA Mutational Analysis , Mutant Proteins/genetics , Mutant Proteins/metabolism , Mutation , Viral Nonstructural Proteins/genetics , Virulence
6.
Antiviral Res ; 142: 148-157, 2017 06.
Article in English | MEDLINE | ID: mdl-28343845

ABSTRACT

Several compounds extracted from spices and herbs exhibit antiviral effects in vitro, suggesting potential pharmacological uses. Curcumin, a component of turmeric, has been used as a food additive and herbal supplement due to its potential medicinal properties. Previously, curcumin exhibited antiviral properties against several viruses, including dengue virus and hepatitis C virus, among others. Here, we describe the antiviral effect of curcumin on Zika and chikungunya viruses, two mosquito-borne outbreak viruses. Both viruses responded to treatment of cells with up to 5 µM curumin without impacting cellular viability. We observed that direct treatment of virus with curcumin reduced infectivity of virus in a dose- and time-dependent manner for these enveloped viruses, as well as vesicular stomatitis virus. In contrast, we found no change in infectivity for Coxsackievirus B3, a non-enveloped virus. Derivatives of curcumin also exhibited antiviral activity against enveloped viruses. Further examination revealed that curcumin interfered with the binding of the enveloped viruses to cells in a dose-dependent manner, though the integrity of the viral RNA was maintained. Together, these results expand the family of viruses sensitive to curcumin and provide a mechanism of action for curcumin's effect on these enveloped viruses.


Subject(s)
Chikungunya virus/drug effects , Curcumin/pharmacology , Virus Attachment/drug effects , Zika Virus/drug effects , Animals , Antiviral Agents/pharmacology , Cell Line , Cell Survival/drug effects , Chikungunya Fever/drug therapy , Chikungunya virus/genetics , Chlorocebus aethiops , Coxsackievirus Infections/drug therapy , Curcumin/administration & dosage , Curcumin/chemistry , Dose-Response Relationship, Drug , Enterovirus/drug effects , HeLa Cells , Humans , Inhibitory Concentration 50 , RNA, Viral/drug effects , Vero Cells , Vesicular stomatitis Indiana virus/drug effects , Virus Internalization/drug effects , Virus Replication/drug effects , Zika Virus/genetics , Zika Virus Infection/drug therapy
7.
J Virol ; 90(21): 9683-9692, 2016 Nov 01.
Article in English | MEDLINE | ID: mdl-27535047

ABSTRACT

RNA viruses present an extraordinary threat to human health, given their sudden and unpredictable appearance, the potential for rapid spread among the human population, and their ability to evolve resistance to antiviral therapies. The recent emergence of chikungunya virus, Zika virus, and Ebola virus highlights the struggles to contain outbreaks. A significant hurdle is the availability of antivirals to treat the infected or protect at-risk populations. While several compounds show promise in vitro and in vivo, these outbreaks underscore the need to accelerate drug discovery. The replication of several viruses has been described to rely on host polyamines, small and abundant positively charged molecules found in the cell. Here, we describe the antiviral effects of two molecules that alter polyamine levels: difluoromethylornithine (DFMO; also called eflornithine), which is a suicide inhibitor of ornithine decarboxylase 1 (ODC1), and diethylnorspermine (DENSpm), an activator of spermidine/spermine N1-acetyltransferase (SAT1). We show that reducing polyamine levels has a negative effect on diverse RNA viruses, including several viruses involved in recent outbreaks, in vitro and in vivo These findings highlight the importance of the polyamine biosynthetic pathway to viral replication, as well as its potential as a target in the development of further antivirals or currently available molecules, such as DFMO. IMPORTANCE: RNA viruses present a significant hazard to human health, and combatting these viruses requires the exploration of new avenues for targeting viral replication. Polyamines, small positively charged molecules within the cell, have been demonstrated to facilitate infection for a few different viruses. Our study demonstrates that diverse RNA viruses rely on the polyamine pathway for replication and highlights polyamine biosynthesis as a promising drug target.


Subject(s)
Antiviral Agents/pharmacology , Polyamines/metabolism , RNA Viruses/drug effects , Acetyltransferases/metabolism , Animals , Cell Line , Chikungunya Fever/drug therapy , Chikungunya Fever/virology , Chikungunya virus/drug effects , Chikungunya virus/metabolism , Disease Outbreaks , Ebolavirus/drug effects , Ebolavirus/metabolism , Eflornithine/pharmacology , Hemorrhagic Fever, Ebola/drug therapy , Hemorrhagic Fever, Ebola/virology , Humans , Mice , Mice, Inbred C57BL , Spermine/analogs & derivatives , Spermine/pharmacology , Virus Replication/drug effects , Zika Virus/drug effects , Zika Virus Infection/drug therapy , Zika Virus Infection/virology
8.
Cell Host Microbe ; 20(2): 167-77, 2016 Aug 10.
Article in English | MEDLINE | ID: mdl-27427208

ABSTRACT

Polyamines are small, positively charged molecules derived from ornithine and synthesized through an intricately regulated enzymatic pathway. Within cells, they are abundant and play several roles in diverse processes. We find that polyamines are required for the life cycle of the RNA viruses chikungunya virus (CHIKV) and Zika virus (ZIKV). Depletion of spermidine and spermine via type I interferon signaling-mediated induction of spermidine/spermine N1-acetyltransferase (SAT1), a key catabolic enzyme in the polyamine pathway, restricts CHIKV and ZIKV replication. Polyamine depletion restricts these viruses in vitro and in vivo, due to impairment of viral translation and RNA replication. The restriction is released by exogenous replenishment of polyamines, further supporting a role for these molecules in virus replication. Thus, SAT1 and, more broadly, polyamine depletion restrict viral replication and suggest promising avenues for antiviral therapies.


Subject(s)
Acetyltransferases/metabolism , Chikungunya virus/physiology , Polyamines/metabolism , Spermidine/metabolism , Spermine/metabolism , Virus Replication , Zika Virus/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...