Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Adv Healthc Mater ; 10(15): e2001169, 2021 08.
Article in English | MEDLINE | ID: mdl-33274834

ABSTRACT

The heart is the first organ to develop in the human embryo through a series of complex chronological processes, many of which critically rely on the interplay between cells and the dynamic microenvironment. Tight spatiotemporal regulation of these interactions is key in heart development and diseases. Due to suboptimal experimental models, however, little is known about the role of microenvironmental cues in the heart development. This study investigates the use of 3D bioprinting and perfusion bioreactor technologies to create bioartificial constructs that can serve as high-fidelity models of the developing human heart. Bioprinted hydrogel-based, anatomically accurate models of the human embryonic heart tube (e-HT, day 22) and fetal left ventricle (f-LV, week 33) are perfused and analyzed both computationally and experimentally using ultrasound and magnetic resonance imaging. Results demonstrate comparable flow hemodynamic patterns within the 3D space. We demonstrate endothelial cell growth and function within the bioprinted e-HT and f-LV constructs, which varied significantly in varying cardiac geometries and flow. This study introduces the first generation of anatomically accurate, 3D functional models of developing human heart. This platform enables precise tuning of microenvironmental factors, such as flow and geometry, thus allowing the study of normal developmental processes and underlying diseases.


Subject(s)
Bioprinting , Printing, Three-Dimensional , Endothelial Cells , Humans , Hydrogels , Perfusion , Tissue Engineering
2.
J Am Heart Assoc ; 8(24): e014490, 2019 12 17.
Article in English | MEDLINE | ID: mdl-31818221

ABSTRACT

Background Tetralogy of Fallot with major aortopulmonary collateral arteries is a heterogeneous form of pulmonary artery (PA) stenosis that requires multiple forms of intervention. We present a patient-specific in vitro platform capable of sustained flow that can be used to train proceduralists and surgical teams in current interventions, as well as in developing novel therapeutic approaches to treat various vascular anomalies. Our objective is to develop an in vitro model of PA stenosis based on patient data that can be used as an in vitro phantom to model cardiovascular disease and explore potential interventions. Methods and Results From patient-specific scans obtained via computer tomography or 3-dimensional (3D) rotational angiography, we generated digital 3D models of the arteries. Subsequently, in vitro models of tetralogy of Fallot with major aortopulmonary collateral arteries were first 3D printed using biocompatible resins and next bioprinted using gelatin methacrylate hydrogel to simulate neonatal vasculature or second-order branches of an older patient with tetralogy of Fallot with major aortopulmonary collateral arteries. Printed models were used to study creation of extraluminal connection between an atretic PA and a major aortopulmonary collateral artery using a catheter-based interventional method. Following the recanalization, engineered PA constructs were perfused and flow was visualized using contrast agents and x-ray angiography. Further, computational fluid dynamics modeling was used to analyze flow in the recanalized model. Conclusions New 3D-printed and computational fluid dynamics models for vascular atresia were successfully created. We demonstrated the unique capability of a printed model to develop a novel technique for establishing blood flow in atretic vessels using clinical imaging, together with 3D bioprinting-based tissue engineering techniques. Additive biomanufacturing technologies can enable fabrication of functional vascular phantoms to model PA stenosis conditions that can help develop novel clinical applications.


Subject(s)
Aorta, Thoracic/abnormalities , Bioprinting , Models, Anatomic , Neovascularization, Pathologic/pathology , Printing, Three-Dimensional , Pulmonary Artery/abnormalities , Tetralogy of Fallot/complications , Aorta, Thoracic/surgery , Humans , Neovascularization, Pathologic/surgery , Patient Care Planning , Pulmonary Artery/surgery
3.
Curr Cardiol Rep ; 21(9): 105, 2019 08 01.
Article in English | MEDLINE | ID: mdl-31367922

ABSTRACT

PURPOSE OF REVIEW: Tissue engineering has expanded into a highly versatile manufacturing landscape that holds great promise for advancing cardiovascular regenerative medicine. In this review, we provide a summary of the current state-of-the-art bioengineering technologies used to create functional cardiac tissues for a variety of applications in vitro and in vivo. RECENT FINDINGS: Studies over the past few years have made a strong case that tissue engineering is one of the major driving forces behind the accelerating fields of patient-specific regenerative medicine, precision medicine, compound screening, and disease modeling. To date, a variety of approaches have been used to bioengineer functional cardiac constructs, including biomaterial-based, cell-based, and hybrid (using cells and biomaterials) approaches. While some major progress has been made using cellular approaches, with multiple ongoing clinical trials, cell-free cardiac tissue engineering approaches have also accomplished multiple breakthroughs, although drawbacks remain. This review summarizes the most promising methods that have been employed to generate cardiovascular tissue constructs for basic science or clinical applications. Further, we outline the strengths and challenges that are inherent to this field as a whole and for each highlighted technology.


Subject(s)
Heart/physiology , Myocardium/cytology , Tissue Engineering/methods , Biocompatible Materials/administration & dosage , Bioprinting , Cell- and Tissue-Based Therapy/methods , Humans , Myocytes, Cardiac/physiology , Printing, Three-Dimensional , Regenerative Medicine/methods , Regenerative Medicine/trends , Tissue Engineering/trends , Tissue Scaffolds , Translational Research, Biomedical
4.
Micromachines (Basel) ; 10(7)2019 Jul 16.
Article in English | MEDLINE | ID: mdl-31315207

ABSTRACT

To date, the fields of biomaterials science and tissue engineering have shown great promise in creating bioartificial tissues and organs for use in a variety of regenerative medicine applications. With the emergence of new technologies such as additive biomanufacturing and 3D bioprinting, increasingly complex tissue constructs are being fabricated to fulfill the desired patient-specific requirements. Fundamental to the further advancement of this field is the design and development of imaging modalities that can enable visualization of the bioengineered constructs following implantation, at adequate spatial and temporal resolution and high penetration depths. These in vivo tracking techniques should introduce minimum toxicity, disruption, and destruction to treated tissues, while generating clinically relevant signal-to-noise ratios. This article reviews the imaging techniques that are currently being adopted in both research and clinical studies to track tissue engineering scaffolds in vivo, with special attention to 3D bioprinted tissue constructs.

SELECTION OF CITATIONS
SEARCH DETAIL
...