Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Polymers (Basel) ; 16(6)2024 Mar 18.
Article in English | MEDLINE | ID: mdl-38543440

ABSTRACT

The replacement of synthetic and petroleum-based ingredients with greener alternatives of natural origin is an imperative issue in rubber technology for the tire industry. In this study, a glycerin-esterified maleated rosin resin, derived from natural resources, is examined as a potential tackifier in styrene-butadiene rubber (SBR) formulations. A comparison is made with two synthetic resins commonly used as tackifiers in tire manufacturing: a petroleum-derived aromatic resin and a phenolic resin. Specifically, this research investigates how these resins affect the structure, dynamics, and curing characteristics of SBR compounds, which are strictly related to the mechanical and technological properties of the final products. Moving die rheometer and equilibrium swelling experiments are employed to analyze vulcanization kinetics and crosslink density, which are differently influenced by the different resins. Information on the polymer-resin compatibility is gained by differential scanning calorimetry and dynamo-mechanical analysis, while solid-state NMR methods offer insights into the structure and dynamics of both cured and uncured SBR compounds at the molecular level. Overall, our analysis shows that the resin of vegetal origin has a comparable impact on the SBR compound to that observed for the synthetic resins and could be further tested for industrial applications.

2.
Polymers (Basel) ; 14(4)2022 Feb 16.
Article in English | MEDLINE | ID: mdl-35215681

ABSTRACT

The characterization of the structural and dynamic properties of rubber networks is of fundamental importance in rubber science and technology to design materials with optimized mechanical properties. In this work, natural and isoprene rubber networks obtained by curing at three different temperatures (140, 150, and 170 °C) and three different sulfur contents (1, 2, and 3 phr) in the presence of a 3 phr accelerator were studied using a combination of low-field time-domain NMR (TD-NMR) techniques, including 1H multiple-quantum experiments for the measurement of residual dipolar couplings (Dres), the application of the Carr-Purcell-Meiboom-Gill pulse sequence for the measurement of the transverse magnetization decay and the extraction of 1H T2 relaxation times, and the use of field cycling NMR relaxometry for the determination of T1 relaxation times. The microscopic properties determined by TD-NMR experiments were discussed in comparison with the macroscopic properties obtained using equilibrium swelling, moving die rheometer, and calorimetric techniques. The obtained correlations between NMR observables, crosslink density values, maximum torque values, and glass transition temperatures provided insights into the effects of the vulcanization temperature and accelerator/sulfur ratio on the structure of the polymer networks, as well as on the effects of crosslinking on the segmental dynamics of elastomers. Dres and T2 were found to show linear correlations with the crosslink density determined by equilibrium swelling, while T1 depends on the local dynamics of polymer segments related to the glass transition, which is also affected by chemical modifications of the polymer chains occurring during vulcanization.

3.
J Phys Chem B ; 125(17): 4546-4554, 2021 05 06.
Article in English | MEDLINE | ID: mdl-33885314

ABSTRACT

1H spin-lattice relaxation rate (R1) dispersions were acquired by field-cycling (FC) NMR relaxometry between 0.01 and 35 MHz over a wide temperature range on polyisoprene rubber (IR), either unfilled or filled with different amounts of carbon black, silica, or a combination of both, and sulfur cured. By exploiting the frequency-temperature superposition principle and constructing master curves for the total FC NMR susceptibility, χ″(ω) = ωR1(ω), the correlation times for glassy dynamics, τs, were determined. Moreover, the contribution of polymer dynamics, χpol″(ω), to χ″(ω) was singled out by subtracting the contribution of glassy dynamics, χglass″(ω), well represented by the Cole-Davidson spectral density. Glassy dynamics resulted moderately modified by the presence of fillers, τs values determined for the filled rubbers being slightly different from those of the unfilled one. Polymer dynamics was affected by the presence of fillers in the Rouse regime. A change in the frequency dependence of χpol″(ω) at low frequencies was observed for all filled rubbers, more pronounced for those reinforced with silica, which suggests that the presence of the filler particles can affect chain conformations, resulting in a different Rouse mode distribution, and/or interchain interactions modulated by translational motions.

4.
Macromolecules ; 53(22): 10028-10039, 2020 Nov 24.
Article in English | MEDLINE | ID: mdl-33250523

ABSTRACT

1H spin lattice relaxation rate (R 1) dispersions were acquired by field-cycling (FC) NMR relaxometry between 0.01 and 35 MHz over a wide temperature range on polyisoprene (IR), polybutadiene (BR), and poly(styrene-co-butadiene) (SBR) rubbers, obtained by vulcanization under different conditions, and on the corresponding uncured elastomers. By exploiting the frequency-temperature superposition principle, χ″(ωτs) master curves were constructed by shifting the total FC NMR susceptibility, χ″(ω) = ωR 1(ω), curves along the frequency axis by the correlation times for glassy dynamics, τs. Longer τs values and, correspondingly, higher glass transition temperatures were determined for the sulfur-cured elastomers with respect to the uncured ones, which increased by increasing the cross-link density, whereas no significant changes were found for fragility. The contribution of polymer dynamics, χ pol ″(ω), to χ″(ω) was singled out by subtracting the contribution of glassy dynamics, χ glass ″(ω), well represented using a Cole-Davidson spectral density. For all elastomers, χ pol ″(ω) was found to represent a small fraction, on the order of 0.05-0.14, of the total χ″(ω), which did not show a significant dependence on cross-link density. In the investigated temperature and frequency ranges, polymer dynamics was found to encompass regimes I (Rouse dynamics) and II (constrained Rouse dynamics) of the tube reptation model for the uncured elastomers and only regime I for the vulcanized ones. This is clear evidence that chemical cross-links impose constraints on chain dynamics on a larger space and time scale than free Rouse modes.

SELECTION OF CITATIONS
SEARCH DETAIL
...