Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Water Res ; 243: 120361, 2023 Sep 01.
Article in English | MEDLINE | ID: mdl-37487357

ABSTRACT

Peracetic acid (PAA) may be used in drinking water treatment for pre-oxidation and mussel control at the intake. PAA may exert a downstream chlorine demand, but full details of this reaction have not been reported. There are three possible mechanisms of this demand: (1) PAA may react directly with chlorine; (2) PAA exists in equilibrium with hydrogen peroxide, which is known to react with chlorine; and (3) as H2O2 reacts with chlorine, PAA will hydrolyze to form more H2O2 to re-establish PAA/H2O2 equilibrium, thereby serving as an indirect reservoir of chlorine demand. While the H2O2 reaction with chlorine is well known, the other mechanisms of possible PAA-induced chlorine demand have not previously been investigated. The observed molar stoichiometric ratio of PAA to free chlorine (n) for the presumed direct PAA + free chlorine reaction was determined to be approximately 2, and the corresponding observed reaction rate coefficients at pH 6, 7, 8, and 9 were 2.76, 3.14, 1.61, 10.1 M-n·s-1, respectively (at 25 °C). With these estimated values, a kinetic model was built to predict the chlorine demand by PAA. The results suggest that chlorine demand from PAA is likely to be negligible over the course of several days (e.g., < 20% chlorine loss) for most conditions except for high pH (e.g., >8) and high PAA:Cl2 molar ratios (e.g., >2:1).


Subject(s)
Drinking Water , Water Pollutants, Chemical , Peracetic Acid/analysis , Chlorine , Hydrogen Peroxide , Disinfection/methods , Chlorides
2.
Front Public Health ; 10: 1029375, 2022.
Article in English | MEDLINE | ID: mdl-36620267

ABSTRACT

Background: Despite worldwide progress in terms of clean water supply, sanitation, and hygiene knowledge, some middle and most of low-income countries are still experiencing many diseases transmitted using unsafe water and the lack of sanitation. Methods: To understand the impact of all waterborne diseases (WBD) registered in Ecuador. We performed a population-based analysis of all cases and deaths due to WBD in Ecuador based on the national public databases of hospital discharges as a proxy of incidence, in-hospital mortality, and countrywide general mortality rates from 2011 to 2020. Results: In Ecuador, mestizos (mixed European and Indigenous American ancestry) had the greatest morbidity rate (141/100,000), followed by indigenous (63/100,000) and self-determined white patients (21/100,000). However, in terms of mortality, indigenous population have the greatest risk and rates, having a 790% additional mortality rate (2.6/100,000) than the reference group (self-determined white populations) at 0.29/100,000. The burden of disease analysis demonstrated that indigenous had the highest burden of disease caused by WBD with 964 YLL per every 100,000 people while mestizos have 360 YYL per 100,000 and self-determined white Ecuadorians have 109 YYL per 100,000. Conclusions: In Ecuador, waterborne diseases (WBD) are still a major public health problem. We found that indigenous population had higher probability of getting sick and die due to WBD than the rest of the ethnic groups in Ecuador. We also found that younger children and the elderly are more likely to be admitted to the hospital due to a WBD. These epidemiological trends are probably associated with the lower life expectancy found among Indigenous than among the rest of the ethnic groups, who die at least, 39 years earlier than the self-determined white populations, 28 years earlier than Afro-Ecuadorians and 12 years earlier than the mestizos.


Subject(s)
Waterborne Diseases , Child , Humans , Aged , Ecuador/epidemiology , Waterborne Diseases/epidemiology , Ethnicity , Public Health , Cost of Illness
SELECTION OF CITATIONS
SEARCH DETAIL
...