Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Biotechnol ; 40(2): 136-43, 2008 Oct.
Article in English | MEDLINE | ID: mdl-18543131

ABSTRACT

The kinetics of polyethylenimine (PEI)-mediated gene transfer at early times after transfection of Chinese hamster ovary (CHO) cell in suspension were investigated using a novel in vitro assay. Addition of an excess of competitor DNA to the culture medium at various times after the initiation of transfection inhibited further cellular uptake of PEI-DNA particles. Using this approach, a constant rate of particle uptake was observed during the first 60 min of transfection at a PEI:DNA ratio of 2:1 (w/w) and a cell density of 2 x 10(6) cells/ml under serum-free conditions. The uptake rate declined considerably during the next 2 h of transfection. Both the rate and the level of PEI-DNA uptake in serum-free minimal medium were found to be dependent on the PEI-DNA ratio, the cell density at the time of transfection, and the extent of particle aggregation. These studies of the early phase of PEI-mediated transfection are expected to lead to further opportunities for optimization of gene transfer to suspension cultures of mammalian cells for the purpose of large-scale transient recombinant protein production.


Subject(s)
Polyethyleneimine , Transfection/methods , Animals , CHO Cells , Cell Culture Techniques , Cricetinae , Cricetulus , DNA , Kinetics , Plasmids
2.
Biotechnol Prog ; 24(2): 458-65, 2008.
Article in English | MEDLINE | ID: mdl-18220408

ABSTRACT

Large-scale transient gene expression (TGE) in mammalian cells is a rapid method to generate recombinant proteins, but the volumetric productivity for secreted proteins is still more than an order of magnitude lower than the yields typically achieved with recombinant cell lines. Here transient recombinant protein production in Chinese hamster ovary cells transfected with linear 25 kDa polyethylenimine was significantly enhanced by incubation of the cells at temperatures ranging from 29 to 33 degrees C after DNA delivery. With this approach, transient recombinant antibody yields of 60-80 mg/L were achieved within 6 days of transfection. The increase in TGE correlated with the accumulation of cells in the G1 phase of the cell cycle, increased cell size, higher cell viability, higher steady-state levels of transgene mRNA, reduced consumption of nutrients, and decreased accumulation of waste products. The enhancement of TGE was not vector-dependent, but the presence of the woodchuck hepatitis virus post-transcriptional regulatory element in the 3' untranslated region of the transgene mRNA increased transient recombinant antibody expression more than 3-fold at 31 degrees C as compared to expression at 37 degrees C. The yields achieved by the low-temperature enhancement of TGE in CHO cells makes this technology feasible for the rapid production of gram amounts of secreted recombinant proteins at large scale (up to 100 L).


Subject(s)
Cold Temperature , Gene Expression/physiology , Animals , Antibodies/genetics , CHO Cells , Cell Cycle/genetics , Cell Cycle/physiology , Cell Size , Cricetinae , Cricetulus , Glycosylation , Green Fluorescent Proteins/genetics , Plasmids/genetics , RNA, Messenger/biosynthesis , RNA, Messenger/genetics , Recombinant Proteins/biosynthesis , Recombinant Proteins/genetics , Transfection
SELECTION OF CITATIONS
SEARCH DETAIL
...