Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
1.
J Bodyw Mov Ther ; 39: 109-115, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38876613

ABSTRACT

BACKGROUND: The aim of this study was to determine the level of participation in the training of the athlete who applied to the clinic with pain by infrared thermography. Symptoms of sartorius muscle (SM) injury are like rectus femoris injuries. CASE SCENARIO: Grade I SM injury of a 23-year-old male football player was determined by thermographic diagnosis. Taking a resting thermal image before the training of the player reported a pain in the upper thigh region. OUTCOMES: Since both legs were equally loaded, in accordance with the method we developed, the thermal image was taken again after a 10-min cycling program with 30-40% resistance. The heat maps of legs seen in the pre- and post-training images were analyzed. There was no asymmetrical finding indicating injury in the resting thermographic evaluation, but asymmetric findings showing the injury in the region of SM were obtained in the repeated thermographic imaging after the 10-min cycling program. Grade I SM injury was detected by MRI afterwards. CONCLUSION: Even if there is no sign of asymmetry in the resting thermography of football players having signs of pain, the injured muscle should be provoked with a safe exercise program and the thermal image should be retaken.


Subject(s)
Muscle, Skeletal , Thermography , Humans , Thermography/methods , Male , Young Adult , Muscle, Skeletal/injuries , Muscle, Skeletal/physiopathology , Athletic Injuries/diagnosis , Athletic Injuries/physiopathology , Exercise/physiology , Magnetic Resonance Imaging/methods , Soccer/injuries , Soccer/physiology
2.
Int Emerg Nurs ; 70: 101348, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37708789

ABSTRACT

AIM: To determine the effect of distraction with a finger puppet for venous blood collection in the pediatric emergency department on children's pain and emotional manifestation. METHODS: Randomized controlled trial with 80 children (aged 3-6 years) who applied to the pediatric emergency department between October 2021 and March 2022. The attention of child was distracted from the procedure by playing with finger puppets before and during the venous blood collection in the finger puppet group. The children in the control group underwent routine blood collection. The procedural pain was measured with the Face, Legs, Activity, Cry, Consolability Scale (FLACC) and the emotional response was measured with the Children's Emotional Manifestation Scale (CEMS). RESULTS: The mean FLACC pain scores of the children in the finger puppet group were statistically significantly lower than the children in the control group (p < 0.001). It was also found that the finger puppet group's mean scores of CEMS before and during the procedure were statistically lower than those of the control group (p < 0.001). CONCLUSIONS: Finger puppets can be used to reduce pain and positively change children's emotional responses during painful procedures such as blood collection.

3.
Biomed Tech (Berl) ; 68(4): 427-435, 2023 Aug 28.
Article in English | MEDLINE | ID: mdl-36862718

ABSTRACT

OBJECTIVES: Hyperspectral imaging is an emerging imaging modality that beginning to gain attention for medical research and has an important potential in clinical applications. Nowadays, spectral imaging modalities such as multispectral and hyperspectral have proven their ability to provide important information that can help to better characterize the wound. Oxygenation changes in the wounded tissue differ from normal tissue. This causes the spectral characteristics to be different. In this study, it is classified cutaneous wounds with neighbourhood extraction 3-dimensional convolutional neural network method. METHODS: The methodology of hyperspectral imaging performed to obtain the most useful information about the wounded and normal tissue is explained in detail. When the hyperspectral signatures of wounded and normal tissues are compared on the hyperspectral image, it is revealed that there is a relative difference between them. By taking advantage of these differences, cuboids that also consider neighbouring pixels are generated, and a uniquely designed 3-dimensional convolutional neural network model is trained with the cuboids to extract both spatial and spectral information. RESULTS: The effectiveness of the proposed method was evaluated for different cuboid spatial dimensions and training/testing rates. The best result with 99.69% was achieved when the training/testing rate was 0.9/0.1 and the cuboid spatial dimension was 17. It is observed that the proposed method outperforms the 2-dimensional convolutional neural network method and achieves high accuracy even with much less training data. The obtained results using the neighbourhood extraction 3-dimensional convolutional neural network method show that the proposed method highly classifies the wounded area. In addition, the classification performance and the2computation time of the neighbourhood extraction 3-dimensional convolutional neural network methodology were analyzed and compared with existing 2-dimensional convolutional neural network. CONCLUSIONS: As a clinical diagnostic tool, hyperspectral imaging, with neighbourhood extraction 3-dimensional convolutional neural network, has yielded remarkable results for the classification of wounded and normal tissues. Skin color does not play any role in the success of the proposed method. Since only the reflectance values of the spectral signatures are different for various skin colors. For different ethnic groups, The spectral signatures of wounded tissue and the spectral signatures of normal tissue show similar spectral characteristics among themselves.


Subject(s)
Hyperspectral Imaging , Neural Networks, Computer
4.
Multimed Syst ; : 1-19, 2022 Jan 29.
Article in English | MEDLINE | ID: mdl-35125671

ABSTRACT

The pandemic caused by the COVID-19 virus affects the world widely and heavily. When examining the CT, X-ray, and ultrasound images, radiologists must first determine whether there are signs of COVID-19 in the images. That is, COVID-19/Healthy detection is made. The second determination is the separation of pneumonia caused by the COVID-19 virus and pneumonia caused by a bacteria or virus other than COVID-19. This distinction is key in determining the treatment and isolation procedure to be applied to the patient. In this study, which aims to diagnose COVID-19 early using X-ray images, automatic two-class classification was carried out in four different titles: COVID-19/Healthy, COVID-19 Pneumonia/Bacterial Pneumonia, COVID-19 Pneumonia/Viral Pneumonia, and COVID-19 Pneumonia/Other Pneumonia. For this study, 3405 COVID-19, 2780 Bacterial Pneumonia, 1493 Viral Pneumonia, and 1989 Healthy images obtained by combining eight different data sets with open access were used. In the study, besides using the original X-ray images alone, classification results were obtained by accessing the images obtained using Local Binary Pattern (LBP) and Local Entropy (LE). The classification procedures were repeated for the images that were combined with the original images, LBP, and LE images in various combinations. 2-D CNN (Two-Dimensional Convolutional Neural Networks) and 3-D CNN (Three-Dimensional Convolutional Neural Networks) architectures were used as classifiers within the scope of the study. Mobilenetv2, Resnet101, and Googlenet architectures were used in the study as a 2-D CNN. A 24-layer 3-D CNN architecture has also been designed and used. Our study is the first to analyze the effect of diversification of input data type on classification results of 2-D/3-D CNN architectures. The results obtained within the scope of the study indicate that diversifying X-ray images with tissue analysis methods in the diagnosis of COVID-19 and including CNN input provides significant improvements in the results. Also, it is understood that the 3-D CNN architecture can be an important alternative to achieve a high classification result.

5.
Appl Intell (Dordr) ; 51(5): 2740-2763, 2021.
Article in English | MEDLINE | ID: mdl-34764560

ABSTRACT

In this study, which aims at early diagnosis of Covid-19 disease using X-ray images, the deep-learning approach, a state-of-the-art artificial intelligence method, was used, and automatic classification of images was performed using convolutional neural networks (CNN). In the first training-test data set used in the study, there were 230 X-ray images, of which 150 were Covid-19 and 80 were non-Covid-19, while in the second training-test data set there were 476 X-ray images, of which 150 were Covid-19 and 326 were non-Covid-19. Thus, classification results have been provided for two data sets, containing predominantly Covid-19 images and predominantly non-Covid-19 images, respectively. In the study, a 23-layer CNN architecture and a 54-layer CNN architecture were developed. Within the scope of the study, the results were obtained using chest X-ray images directly in the training-test procedures and the sub-band images obtained by applying dual tree complex wavelet transform (DT-CWT) to the above-mentioned images. The same experiments were repeated using images obtained by applying local binary pattern (LBP) to the chest X-ray images. Within the scope of the study, four new result generation pipeline algorithms having been put forward additionally, it was ensured that the experimental results were combined and the success of the study was improved. In the experiments carried out in this study, the training sessions were carried out using the k-fold cross validation method. Here the k value was chosen as 23 for the first and second training-test data sets. Considering the average highest results of the experiments performed within the scope of the study, the values of sensitivity, specificity, accuracy, F-1 score, and area under the receiver operating characteristic curve (AUC) for the first training-test data set were 0,9947, 0,9800, 0,9843, 0,9881 and 0,9990 respectively; while for the second training-test data set, they were 0,9920, 0,9939, 0,9891, 0,9828 and 0,9991; respectively. Within the scope of the study, finally, all the images were combined and the training and testing processes were repeated for a total of 556 X-ray images comprising 150 Covid-19 images and 406 non-Covid-19 images, by applying 2-fold cross. In this context, the average highest values of sensitivity, specificity, accuracy, F-1 score, and AUC for this last training-test data set were found to be 0,9760, 1,0000, 0,9906, 0,9823 and 0,9997; respectively.

6.
Cognit Comput ; : 1-28, 2021 Jul 15.
Article in English | MEDLINE | ID: mdl-34306240

ABSTRACT

Patients infected with the COVID-19 virus develop severe pneumonia, which generally leads to death. Radiological evidence has demonstrated that the disease causes interstitial involvement in the lungs and lung opacities, as well as bilateral ground-glass opacities and patchy opacities. In this study, new pipeline suggestions are presented, and their performance is tested to decrease the number of false-negative (FN), false-positive (FP), and total misclassified images (FN + FP) in the diagnosis of COVID-19 (COVID-19/non-COVID-19 and COVID-19 pneumonia/other pneumonia) from CT lung images. A total of 4320 CT lung images, of which 2554 were related to COVID-19 and 1766 to non-COVID-19, were used for the test procedures in COVID-19 and non-COVID-19 classifications. Similarly, a total of 3801 CT lung images, of which 2554 were related to COVID-19 pneumonia and 1247 to other pneumonia, were used for the test procedures in COVID-19 pneumonia and other pneumonia classifications. A 24-layer convolutional neural network (CNN) architecture was used for the classification processes. Within the scope of this study, the results of two experiments were obtained by using CT lung images with and without local binary pattern (LBP) application, and sub-band images were obtained by applying dual-tree complex wavelet transform (DT-CWT) to these images. Next, new classification results were calculated from these two results by using the five pipeline approaches presented in this study. For COVID-19 and non-COVID-19 classification, the highest sensitivity, specificity, accuracy, F-1, and AUC values obtained without using pipeline approaches were 0.9676, 0.9181, 0.9456, 0.9545, and 0.9890, respectively; using pipeline approaches, the values were 0.9832, 0.9622, 0.9577, 0.9642, and 0.9923, respectively. For COVID-19 pneumonia/other pneumonia classification, the highest sensitivity, specificity, accuracy, F-1, and AUC values obtained without using pipeline approaches were 0.9615, 0.7270, 0.8846, 0.9180, and 0.9370, respectively; using pipeline approaches, the values were 0.9915, 0.8140, 0.9071, 0.9327, and 0.9615, respectively. The results of this study show that classification success can be increased by reducing the time to obtain per-image results through using the proposed pipeline approaches.

7.
Multimed Tools Appl ; 80(4): 5423-5447, 2021.
Article in English | MEDLINE | ID: mdl-33041635

ABSTRACT

The Covid-19 virus outbreak that emerged in China at the end of 2019 caused a huge and devastating effect worldwide. In patients with severe symptoms of the disease, pneumonia develops due to Covid-19 virus. This causes intense involvement and damage in lungs. Although the emergence of the disease occurred a short time ago, many literature studies have been carried out in which these effects of the disease on the lungs were revealed by the help of lung CT imaging. In this study, 1.396 lung CT images in total (386 Covid-19 and 1.010 Non-Covid-19) were subjected to automatic classification. In this study, Convolutional Neural Network (CNN), one of the deep learning methods, was used which suggested automatic classification of CT images of lungs for early diagnosis of Covid-19 disease. In addition, k-Nearest Neighbors (k-NN) and Support Vector Machine (SVM) was used to compare the classification successes of deep learning with machine learning. Within the scope of the study, a 23-layer CNN architecture was designed and used as a classifier. Also, training and testing processes were performed for Alexnet and Mobilenetv2 CNN architectures as well. The classification results were also calculated for the case of increasing the number of images used in training for the first 23-layer CNN architecture by 5, 10, and 20 times using data augmentation methods. To reveal the effect of the change in the number of images in the training and test clusters on the results, two different training and testing processes, 2-fold and 10-fold cross-validation, were performed and the results of the study were calculated. As a result, thanks to these detailed calculations performed within the scope of the study, a comprehensive comparison of the success of the texture analysis method, machine learning, and deep learning methods in Covid-19 classification from CT images was made. The highest mean sensitivity, specificity, accuracy, F-1 score, and AUC values obtained as a result of the study were 0,9197, 0,9891, 0,9473, 0,9058, 0,9888; respectively for 2-fold cross-validation, and they were 0,9404, 0,9901, 0,9599, 0,9284, 0,9903; respectively for 10-fold cross-validation.

8.
J Med Syst ; 36(2): 497-510, 2012 Apr.
Article in English | MEDLINE | ID: mdl-20703700

ABSTRACT

Curve and surface thinning are widely-used skeletonization techniques for modeling objects in three dimensions. In the case of disordered porous media analysis, however, neither is really efficient since the internal geometry of the object is usually composed of both rod and plate shapes. This paper presents an alternative to compute a hybrid shape-dependent skeleton and its application to porous media. The resulting skeleton combines 2D surfaces and 1D curves to represent respectively the plate-shaped and rod-shaped parts of the object. For this purpose, a new technique based on neural networks is proposed: cascade combinations of complex wavelet transform (CWT) and complex-valued artificial neural network (CVANN). The ability of the skeleton to characterize hybrid shaped porous media is demonstrated on a trabecular bone sample. Results show that the proposed method achieves high accuracy rates about 99.78%-99.97%. Especially, CWT (2nd level)-CVANN structure converges to optimum results as high accuracy rate-minimum time consumption.


Subject(s)
Artificial Intelligence , Bone and Bones/anatomy & histology , Image Processing, Computer-Assisted/methods , Porosity , Wavelet Analysis , Humans , Imaging, Three-Dimensional , Neural Networks, Computer
9.
Artif Intell Med ; 44(1): 65-76, 2008 Sep.
Article in English | MEDLINE | ID: mdl-18650074

ABSTRACT

OBJECTIVE: In biomedical signal classification, due to the huge amount of data, to compress the biomedical waveform data is vital. This paper presents two different structures formed using feature extraction algorithms to decrease size of feature set in training and test data. MATERIALS AND METHODS: The proposed structures, named as wavelet transform-complex-valued artificial neural network (WT-CVANN) and complex wavelet transform-complex-valued artificial neural network (CWT-CVANN), use real and complex discrete wavelet transform for feature extraction. The aim of using wavelet transform is to compress data and to reduce training time of network without decreasing accuracy rate. In this study, the presented structures were applied to the problem of classification in carotid arterial Doppler ultrasound signals. Carotid arterial Doppler ultrasound signals were acquired from left carotid arteries of 38 patients and 40 healthy volunteers. The patient group included 22 males and 16 females with an established diagnosis of the early phase of atherosclerosis through coronary or aortofemoropopliteal (lower extremity) angiographies (mean age, 59 years; range, 48-72 years). Healthy volunteers were young non-smokers who seem to not bear any risk of atherosclerosis, including 28 males and 12 females (mean age, 23 years; range, 19-27 years). RESULTS AND CONCLUSION: Sensitivity, specificity and average detection rate were calculated for comparison, after training and test phases of all structures finished. These parameters have demonstrated that training times of CVANN and real-valued artificial neural network (RVANN) were reduced using feature extraction algorithms without decreasing accuracy rate in accordance to our aim.


Subject(s)
Algorithms , Atherosclerosis/diagnostic imaging , Carotid Artery Diseases/diagnostic imaging , Neural Networks, Computer , Signal Processing, Computer-Assisted , Ultrasonography, Doppler , Adult , Aged , Female , Humans , Male , Middle Aged , Predictive Value of Tests , Reproducibility of Results , Young Adult
10.
Artif Intell Med ; 40(2): 143-56, 2007 Jun.
Article in English | MEDLINE | ID: mdl-17400432

ABSTRACT

OBJECTIVE: In this paper, the new complex-valued wavelet artificial neural network (CVWANN) was proposed for classifying Doppler signals recorded from patients and healthy volunteers. CVWANN was implemented on four different structures (CVWANN-1, -2, -3 and -4). MATERIALS AND METHODS: In this study, carotid arterial Doppler ultrasound signals were acquired from left carotid arteries of 38 patients and 40 healthy volunteers. The patient group had an established diagnosis of the early phase of atherosclerosis through coronary or aortofemoropopliteal angiographies. In implemented structures in this paper, Haar wavelet and Mexican hat wavelet functions were used as real and imaginary parts of activation function on different sequence in hidden layer nodes. CVWANN-1, -2 -3 and -4 were implemented by using Haar-Haar, Mexican hat-Mexican hat, Haar-Mexican hat, Mexican hat-Haar as real-imaginary parts of activation function in hidden layer nodes, respectively. RESULTS AND CONCLUSION: In contrast to CVWANN-2, which reached classification rates of 24.5%, CVWANN-1, -3 and -4 classified 40 healthy and 38 unhealthy subjects for both training and test phases with 100% correct classification rate using leave-one-out cross-validation. These networks have 100% sensitivity, 100% specifity and average detection rate is calculated as 100%. In addition, positive predictive value and negative predictive value were obtained as 100% for these networks. These results shown that CVWANN-1, -3 and -4 succeeded to classify Doppler signals. Moreover, training time and processing complexity were decreased considerable amount by using CVWANN-3. As conclusion, using of Mexican hat wavelet function in real and imaginary parts of hidden layer activation function (CVWANN-2) is not suitable for classifying healthy and unhealthy subjects with high accuracy rate. The cause of unsuitability (obtaining the poor results in CVWANN-2) is lack of harmony between type of activation function in hidden layer and type of input signals in neural network.


Subject(s)
Atherosclerosis/diagnostic imaging , Carotid Arteries/diagnostic imaging , Neural Networks, Computer , Ultrasonography, Doppler , Humans , Predictive Value of Tests , Sensitivity and Specificity
11.
Comput Biol Med ; 37(3): 287-95, 2007 Mar.
Article in English | MEDLINE | ID: mdl-16603148

ABSTRACT

In this study, carotid artery Doppler ultrasound signals were acquired from left carotid arteries of 38 patients and 40 healthy volunteers. The patient group had an established diagnosis of the early phase of atherosclerosis through coronary or aortofemoropopliteal angiographies. Doppler signals were processed using fast Fourier transform (FFT) with different window types, Hilbert transform and Welch methods. After these processes, Doppler signals were classified using complex-valued artificial neural network (CVANN). Effects of window types in classification were interpreted. Results for three methods and five window types (Bartlett, Blackman, Boxcar, Hamming, Hanning) were presented as comparatively. CVANN is a new technique for solving classification problems in Doppler signals. Furthermore, examining the effects of window types in addition to CVANN in this classification problem is also the first study in literature related with this subject. Results showed that CVANN, whose input data were processed by Welch method for each window types stated above, had classified all training and test patterns, which consist of 36 healthy, 34 unhealthy and four healthy, four unhealthy subjects, respectively, with 100% classification accuracy for both training and test phases.


Subject(s)
Atherosclerosis/diagnostic imaging , Carotid Artery Diseases/diagnostic imaging , Carotid Stenosis/diagnostic imaging , Diagnosis, Computer-Assisted , Image Processing, Computer-Assisted , Neural Networks, Computer , Software , Ultrasonography, Doppler/classification , Adult , Aged , Female , Fourier Analysis , Humans , Male , Middle Aged , Reference Values , Reproducibility of Results
12.
Comput Biol Med ; 37(1): 28-36, 2007 Jan.
Article in English | MEDLINE | ID: mdl-16343473

ABSTRACT

In this study, carotid arterial Doppler ultrasound signals were acquired from left carotid arteries of 38 patients and 40 healthy volunteers. The patient group had an established diagnosis of the early phase of atherosclerosis through coronary or aortofemoropopliteal angiographies. Results were classified using complex-valued artificial neural network (CVANN). Principal component analysis (PCA) and fuzzy c-means clustering (FCM) algorithm were used to make a CVANN system more effective. For this aim, before classifying with CVANN, PCA method was used for feature extraction in PCA-CVANN architecture and FCM algorithm was used for data set reduction in FCM-CVANN architecture. Training and test data were selected randomly using 10-fold cross validation. PCA-CVANN and FCM-CVANN architectures classified healthy and unhealthy subjects for training and test data with about 100% correct classification rate. These results shown that PCA-CVANN and FCM-CVANN classified Doppler signals successfully.


Subject(s)
Atherosclerosis/diagnostic imaging , Carotid Arteries/diagnostic imaging , Ultrasonography, Doppler/statistics & numerical data , Adult , Aged , Atherosclerosis/classification , Case-Control Studies , Computer Simulation , Female , Humans , Male , Middle Aged , Models, Cardiovascular , Neural Networks, Computer , Reference Values , Signal Processing, Computer-Assisted
SELECTION OF CITATIONS
SEARCH DETAIL
...