Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 26
Filter
Add more filters










Publication year range
1.
J Alzheimers Dis ; 98(3): 1001-1016, 2024.
Article in English | MEDLINE | ID: mdl-38489181

ABSTRACT

Background: Low-dose radiation therapy (LD-RT) has demonstrated in preclinical and clinical studies interesting properties in the perspective of targeting Alzheimer's disease (AD), including anti-amyloid and anti-inflammatory effects. Nevertheless, studies were highly heterogenous with respect to total doses, fractionation protocols, sex, age at the time of treatment and delay post treatment. Recently, we demonstrated that LD-RT reduced amyloid peptides and inflammatory markers in 9-month-old TgF344-AD (TgAD) males. Objective: As multiple studies demonstrated a sex effect in AD, we wanted to validate that LD-RT benefits are also observed in TgAD females analyzed at the same age. Methods: Females were bilaterally treated with 2 Gy×5 daily fractions, 2 Gy×5 weekly fractions, or 10 fractions of 1 Gy delivered twice a week. The effect of each treatment on amyloid load and inflammation was evaluated using immunohistology and biochemistry. Results: A daily treatment did not affect amyloid and reduced only microglial-mediated inflammation markers, the opposite of the results obtained in our previous male study. Moreover, altered fractionations (2 Gy×5 weekly fractions or 10 fractions of 1 Gy delivered twice a week) did not influence the amyloid load or neuroinflammatory response in females. Conclusions: A daily treatment consequently appears to be the most efficient for AD. This study also shows that the anti-amyloid and anti-inflammatory response to LD-RT are, at least partly, two distinct mechanisms. It also emphasizes the necessity to assess the sex impact when evaluating responses in ongoing pilot clinical trials testing LD-RT against AD.


Subject(s)
Alzheimer Disease , Rats , Male , Female , Animals , Alzheimer Disease/pathology , Microglia/pathology , Disease Models, Animal , Amyloid , Inflammation/radiotherapy , Inflammation/drug therapy , Amyloidogenic Proteins , Anti-Inflammatory Agents/therapeutic use , Amyloid beta-Peptides/therapeutic use
2.
ACS Omega ; 8(34): 31225-31236, 2023 Aug 29.
Article in English | MEDLINE | ID: mdl-37663488

ABSTRACT

An increase in astrocyte reactivity has been described in Alzheimer's disease and seems to be related to the presence of a pro-inflammatory environment. Reactive astrocytes show an increase in the density of the 18 kDa translocator protein (TSPO), but TSPO involvement in astrocyte functions remains poorly understood. The goal of this study was to better characterize the mechanisms leading to the increase in TSPO under inflammatory conditions and the associated consequences. For this purpose, the C6 astrocytic cell line was used in the presence of lipopolysaccharide (LPS) or TSPO overexpression mediated by the transfection of a plasmid encoding TSPO. The results show that nonlethal doses of LPS induced TSPO expression at mRNA and protein levels through a STAT3-dependent mechanism and increased the number of mitochondria per cell. LPS stimulated reactive oxygen species (ROS) production and decreased glucose consumption (quantified by the [18F]FDG uptake), and these effects were diminished by FEPPA, a TSPO antagonist. The transfection-mediated overexpression of TSPO induced ROS production, and this effect was blocked by FEPPA. In addition, a synergistic effect of overexpression of TSPO and LPS on ROS production was observed. These data show that the increase of TSPO in astrocytic cells is involved in the regulation of glucose metabolism and in the pro-inflammatory response. These data suggest that the overexpression of TSPO by astrocytes in Alzheimer's disease would have rather deleterious effects by promoting the pro-inflammatory response.

3.
Nat Commun ; 14(1): 5247, 2023 08 28.
Article in English | MEDLINE | ID: mdl-37640701

ABSTRACT

Microglial activation plays central roles in neuroinflammatory and neurodegenerative diseases. Positron emission tomography (PET) targeting 18 kDa Translocator Protein (TSPO) is widely used for localising inflammation in vivo, but its quantitative interpretation remains uncertain. We show that TSPO expression increases in activated microglia in mouse brain disease models but does not change in a non-human primate disease model or in common neurodegenerative and neuroinflammatory human diseases. We describe genetic divergence in the TSPO gene promoter, consistent with the hypothesis that the increase in TSPO expression in activated myeloid cells depends on the transcription factor AP1 and is unique to a subset of rodent species within the Muroidea superfamily. Finally, we identify LCP2 and TFEC as potential markers of microglial activation in humans. These data emphasise that TSPO expression in human myeloid cells is related to different phenomena than in mice, and that TSPO-PET signals in humans reflect the density of inflammatory cells rather than activation state.


Subject(s)
Microglia , Neurodegenerative Diseases , Animals , Mice , Neurodegenerative Diseases/genetics , Macrophages , Myeloid Cells , Genetic Drift
4.
Mol Brain ; 16(1): 57, 2023 07 05.
Article in English | MEDLINE | ID: mdl-37408083

ABSTRACT

The 18 kDa translocator protein (TSPO) is a classical marker of neuroinflammation targeted for in vivo molecular imaging. Microglial cells were originally thought to be the only source of TSPO overexpression but astrocytes, neurons and endothelial cells can also up-regulate TSPO depending on the pathological context. This study aims to determine the cellular origin of TSPO overexpression in a simplified model of neuroinflammation and to identify the molecular pathways involved. This is essential to better interpret TSPO molecular imaging in preclinical and clinical settings. We used lentiviral vectors (LV) to overexpress the ciliary neurotrophic factor (CNTF) in the right striatum of 2-month-old Sprague Dawley rats. A LV encoding for ß-Galactosidase (LV-LacZ) was used as control. One month later, TSPO expression was measured by single-photon emission computed tomography (SPECT) imaging using [125I]CLINDE. The fluorescence-activated cell sorting to radioligand-treated tissue (FACS-RTT) method was used to quantify TSPO levels in acutely sorted astrocytes, microglia, neurons and endothelial cells. A second cohort was injected with LV-CNTF and a LV encoding suppressor of cytokine signaling 3 (SOCS3), to inhibit the JAK-STAT3 pathway specifically in astrocytes. GFAP and TSPO expressions were quantified by immunofluorescence. We measured a significant increase in TSPO signal in response to CNTF by SPECT imaging. Using FACS-RTT, we observed TSPO overexpression in reactive astrocytes (+ 153 ± 62%) but also in microglia (+ 2088 ± 500%) and neurons (+ 369 ± 117%), accompanied by an increase in TSPO binding sites per cell in those three cell populations. Endothelial cells did not contribute to TSPO signal increase. Importantly, LV-SOCS3 reduced CNTF-induced astrocyte reactivity and decreased global TSPO immunoreactivity (-71% ± 30%), suggesting that TSPO overexpression is primarily mediated by reactive astrocytes. Overall, this study reveals that CNTF induces TSPO in multiple cell types in the rat striatum, through the JAK2-STAT3 pathway in astrocytes, identifying this cell type as the primary mediator of CNTF effects neuroinflammatory processes. Our results highlight the difficulty to interpret TSPO imaging in term of cellular origin without addition cellular analysis by FACS-RTT or quantitative immunostainings. Consequently, TSPO should only be used as a global marker of neuroinflammation.


Subject(s)
Astrocytes , Ciliary Neurotrophic Factor , Animals , Rats , Astrocytes/metabolism , Carrier Proteins/metabolism , Ciliary Neurotrophic Factor/metabolism , Ciliary Neurotrophic Factor/pharmacology , Endothelial Cells/metabolism , Neuroinflammatory Diseases , Rats, Sprague-Dawley
5.
J Neuroinflammation ; 19(1): 311, 2022 Dec 22.
Article in English | MEDLINE | ID: mdl-36550510

ABSTRACT

Preclinical studies have recently evaluated the impact of low-dose brain radiation therapy (LD-RT) in animal models of Alzheimer's disease (AD) showing anti-amyloid and anti-inflammatory effects of this treatment. Its effectiveness varied, however, depending on the LD-RT protocol used and the stage when the treatment was applied. In this study, we aimed to evaluate the therapeutic potential of 10 Gy delivered in five daily fractions of 2 Gy (a protocol previously shown to induce an improvement of cognitive performances) in 9-month-old TgF344-AD rats, modeling at a pre-symptomatic stage of the disease. We showed that at an early stage, LD-RT was able to lower levels of the 18-kDa translocator protein (TSPO)-mediated neuroinflammation to normal ranges in addition to the secreted CLUSTERIN, another inflammatory protein also involved in Aß aggregation. In addition, we demonstrated that LD-RT reduces all amyloid forms (~ - 60 to - 80%, P < 0.01; soluble and aggregated forms of Aß40, Aß42, and Aßoligomers). Interestingly, we showed for the first time that sAPPα levels were improved by the treatment, showing a higher activation of the non-amyloidogenic pathway, that could favor neuronal survival. The current evidence confirms the capacity of LD-RT to successfully modulate two pathological hallmarks of AD, namely amyloid and neuroinflammation, when applied before symptoms onset.


Subject(s)
Alzheimer Disease , Amyloid beta-Peptides , Rats , Animals , Amyloid beta-Peptides/metabolism , Clusterin/metabolism , Clusterin/pharmacology , Neuroinflammatory Diseases , Alzheimer Disease/metabolism , Brain/metabolism , Amyloid/metabolism , Disease Models, Animal , Carrier Proteins/metabolism , Receptors, GABA-A
6.
J Alzheimers Dis ; 86(2): 641-653, 2022.
Article in English | MEDLINE | ID: mdl-35124652

ABSTRACT

BACKGROUND: Low-dose radiation therapy (LD-RT) has been shown to decrease amyloidosis or inflammation in systemic diseases and has recently been proposed as possible treatment of Alzheimer's disease (AD). A positive effect of LD-RT on tauopathy, the other marker of AD, has also been suggested. These effects have been shown in preclinical studies, but their mechanisms are still not well understood. OBJECTIVE: This study aimed to evaluate if anti-amyloid and anti-inflammatory effects of LD-RT can be observed at an early stage of the disease. Its impact on tauopathy and behavioral alterations was also investigated. METHODS: The whole brain of 12-month-old 3xTg-AD mice was irradiated with 10 Gy in 5 daily fractions of 2 Gy. Mice underwent behavioral tests before and 8 weeks post treatment. Amyloid load, tauopathy, and neuroinflammation were measured using histology and/or ELISA. RESULTS: Compared with wild-type animals, 3xTg-AD mice showed a moderate amyloid and tau pathology restricted to the hippocampus, a glial reactivity restricted to the proximity of amyloid plaques. LD-RT significantly reduced Aß42 aggregated forms (-71%) in the hippocampus and tended to reduce other forms in the hippocampus and frontal cortex but did not affect tauopathy or cognitive performance. A trend for neuroinflammation markers reduction was also observed. CONCLUSION: When applied at an early stage, LD-RT reduced amyloid load and possibly neuroinflammation markers, with no impact on tauopathy. The long-term persistence of these beneficial effects of LD-RT should be evaluated in future studies.


Subject(s)
Alzheimer Disease , Amyloidosis , Alzheimer Disease/genetics , Alzheimer Disease/pathology , Alzheimer Disease/radiotherapy , Amyloid beta-Peptides , Amyloidogenic Proteins , Amyloidosis/radiotherapy , Animals , Disease Models, Animal , Mice , Mice, Transgenic , Plaque, Amyloid/pathology , tau Proteins/genetics
7.
Aging Brain ; 2: 100045, 2022.
Article in English | MEDLINE | ID: mdl-36908874

ABSTRACT

Increase in the brain expression of the 18 kDa translocator protein (TSPO) is considered as a marker of neuroinflammation in the context of brain diseases, such as Alzheimer's disease (AD). However, in non-demented subjects with Alzheimer's neuropathology, TSPO accumulation in hippocampus subdivisions has not been fully characterized. To determine if TSPO is associated with the presence of amyloid ß plaques and/or phosphorylated Tau accumulation, we analyzed hippocampal sections using immunohistochemistry of 14 non-demented subjects with positive staining for Aß and/or phosphorylated Tau. TSPO expression was heterogenous with higher accumulation in the CA2/3 and subiculum subfields of the hippocampus. Its distribution closely resembled that of the microglial IBA1 marker and of the Aß42 amyloid form. In addition, positive correlations were observed between TSPO and IBA1 densities in CA4, CA2/3 and the subiculum but not with either the astrocyte GFAP marker or the AD-type Aß and Tau markers. This study sustains the hypothesis that TSPO is mainly associated with microglia and in Aß42-rich subdivisions in the hippocampus of non-demented elderly individuals.

8.
Front Oncol ; 11: 734881, 2021.
Article in English | MEDLINE | ID: mdl-34970480

ABSTRACT

Androgen deprivation therapy (ADT) is a standard treatment for prostate cancer patients, routinely used in the palliative or in the curative setting in association with radiotherapy. Among the systemic long-term side effects of ADT, growing data suggest a potentially increased risk of dementia/Alzheimer's disease in prostate cancer patients treated with hormonal manipulation. While pre-clinical data suggest that androgen ablation may have neurotoxic effects due to Aß accumulation and increased tau phosphorylation in small animal brains, clinical studies have measured the impact of ADT on long-term cognitive function, with conflicting results, and studies on biological changes after ADT are still lacking. The aim of this review is to report on the current evidence on the association between the ADT use and the risk of cognitive impairment in prostate cancer patients. We will focus on the contribution of Alzheimer's disease biomarkers, namely through imaging, to investigate potential ADT-induced brain modifications. The evidence from these preliminary studies shows brain changes in gray matter volume, cortical activation and metabolism associated with ADT, however with a large variability in biomarker selection, ADT duration and cognitive outcome. Importantly, no study investigated yet biomarkers of Alzheimer's disease pathology, namely amyloid and tau. These preliminary data emphasize the need for larger targeted investigations.

9.
Sci Rep ; 11(1): 19412, 2021 09 30.
Article in English | MEDLINE | ID: mdl-34593951

ABSTRACT

Alzheimer's disease (AD) is characterized by amyloid (Aß) protein aggregation and neurofibrillary tangles accumulation, accompanied by neuroinflammation. With all the therapeutic attempts targeting these biomarkers having been unsuccessful, the understanding of early mechanisms involved in the pathology is of paramount importance. Dopaminergic system involvement in AD has been suggested, particularly through the appearance of dopaminergic dysfunction-related neuropsychiatric symptoms and an overall worsening of cognitive and behavioral symptoms. In this study, we reported an early dopaminergic dysfunction in a mouse model presenting both amyloid and Tau pathology. 3xTg-AD mice showed an increase of postsynaptic D2/3R receptors density in the striatum and D2/3-autoreceptors in SN/VTA cell bodies. Functionally, a reduction of anxiety-like behavior, an increase in locomotor activity and D2R hyper-sensitivity to quinpirole stimulation have been observed. In addition, microglial cells in the striatum showed an early inflammatory response, suggesting its participation in dopaminergic alterations. These events are observed at an age when tau accumulation and Aß deposits in the hippocampus are low. Thus, our results suggest that early dopaminergic dysfunction could have consequences in behavior and cognitive function, and may shed light on future therapeutic pathways of AD.


Subject(s)
Alzheimer Disease/metabolism , Amyloid beta-Peptides/metabolism , Receptors, Dopamine D2/metabolism , tau Proteins/metabolism , Animals , Disease Models, Animal , Female , Mice , Mice, Inbred C57BL
10.
J Vis Exp ; (175)2021 09 10.
Article in English | MEDLINE | ID: mdl-34570103

ABSTRACT

Glial cells probably have a considerable implication in the pathophysiology of neurodegenerative disorders, such as Alzheimer's disease (AD). Their alterations are perhaps associated with a pro-inflammatory state. The TgF344-AD rat strain has been designed to express human APP and human PS1ΔE9 genes, encoding for amyloid proteins Aß-40 and Aß-42 and displays amyloid pathology and cognitive deficits with aging. The TgF344-AD rat model is used in this study to evaluate the cellular origin of the 18 kDa translocator protein (TSPO, a marker of glial cell activation) binding, and the 5HT2A-receptor (5HT2AR) serotonin receptor levels that are possibly disrupted in AD. The technique presented here is Fluorescence-Activated Cell Sorting to Radioligand Treated Tissue (FACS-RTT), a quantitative cell-type-specific technique complementary to in vivo PET or SPECT or ex vivo/in vitro autoradiography techniques. It quantifies the same radiolabeled tracer used prior for imaging, using a γ counter after cytometry cell sorting. This allows determining the cellular origin of the radiolabeled protein with high cellular specificity and sensitivity. For example, studies with FACS-RTT showed that (i) the increase in TSPO binding was associated with microglia in a rat model of lipopolysaccharide (LPS)-induced neuroinflammation, (ii) an increase in TSPO binding at 12- and 18-months was associated with astrocytes first, and then microglia in the TgF344-AD rats compared to wild type (WT) rats, and (iii) the striatal density of 5HT2AR decreases in astrocytes at 18 months in the same rat AD model. Interestingly, this technique can be extended to virtually all radiotracers.


Subject(s)
Alzheimer Disease , Positron-Emission Tomography , Animals , Astrocytes , Disease Models, Animal , Flow Cytometry , Microglia , Rats
11.
ACS Omega ; 6(29): 18719-18727, 2021 Jul 27.
Article in English | MEDLINE | ID: mdl-34337211

ABSTRACT

Apoptosis-dependent cell death of astrocytes has been described in Alzheimer's disease and is linked to the presence of two markers of the pathology: the ß-amyloid peptide (Aß) and the hyperphosphorylated Tau protein. Astrocytes also show reactive states characterized by the overexpression of the 18 kDa translocator protein (TSPO). However, TSPO is also known, in other areas of research, to participate in cell proliferation and death. Regulation of its function by autopolymerization has been described, but its involvement in apoptosis remains unknown. The aim was to determine the effects of Aß, Tau, and TSPO antagonists on proliferation/cell death and TSPO polymerization in the C6 astrocytic cell line. The dose-effect on cell death in response to Aß and Tau was observed but without alterations of TSPO density and polymerization. In contrast, nanomolar doses of antagonists stimulated cell proliferation, although micromolar doses induced cell death with a reduction in TSPO density and an increase in the ratio between the 36 and the 72 kDa TSPO polymers. Therefore, an alteration in the density and polymerization of TSPO appears to be related to cell death induced by TSPO antagonisms. In contrast, Aß- and Tau-induced death seems to be independent of TSPO alterations. In conclusion, even if its role in cell death and proliferation is demonstrated, TSPO seems to, in the context of Alzheimer's disease, rather represent a marker of the activity of astrocytes than of cell death.

12.
Brain Commun ; 3(2): fcab029, 2021.
Article in English | MEDLINE | ID: mdl-34286270

ABSTRACT

Dopamine pathways alterations are reported in Alzheimer's disease. However, it is difficult in humans to establish when these deficits appear and their impact in the course of Alzheimer's disease. In the TgF344-Alzheimer's disease rat model at the age of 6 months, we showed a reduction in in vivo release of striatal dopamine due to serotonin 5HT2A-receptor blockade, in the absence of alterations in 5HT2A-receptor binding, suggesting a reduction in 5HT2A-receptor-dopamine system connectivity. In addition, a functional hypersensitivity of postsynaptic dopamine D2-receptors and D2-autoreceptors was also reported without any change in D2-receptor density and in the absence of amyloid plaques or overexpression of the 18 kDa translocator protein (an inflammatory marker) in areas of the dopamine system. Citalopram, a selective serotonin reuptake inhibitor, induced functional 5HT2A-receptor-D2-receptor connectivity changes but had no effect on D2-autoreceptor hypersensitivity. In older rats, dopamine cell bodies overexpressed translocator protein and dopamine projection sites accumulated amyloid. Interestingly, the 5HT2A-receptor density is decreased in the accumbens subdivisions and the substantia nigra pars compacta. This reduction in the striatum is related to the astrocytic expression of 5HT2A-receptor. Our results indicate that both serotonin/dopamine connectivity and dopamine signalling pathways are dysregulated and potentially represent novel early diagnostic and therapeutic avenues.

13.
Neurobiol Aging ; 103: 117-127, 2021 07.
Article in English | MEDLINE | ID: mdl-33895629

ABSTRACT

Alzheimer's disease (AD) is a neurodegenerative condition affecting memory performance. This pathology is characterized by intracerebral amyloid plaques and tau tangles coupled with neuroinflammation. During the last century, numerous therapeutic trials unfortunately failed highlighting the need to find new therapeutic approaches. Low-dose brain radiotherapy (LD-RT) showed efficacy to reduce amyloid load and inflammation in patients with peripheral diseases. In this study, the therapeutic potential of 2 LD-RT schedules was tested on the TgF344-AD rat model of AD. Fifteen-month-old rats were irradiated with 5 fractions of 2 Gy delivered either daily or weekly. The daily treatment induced an improvement of memory performance in the Y-maze. In contrast, the weekly treatment increased the microglial reactivity in the hippocampus. A lack of effect of both regimens on amyloid pathology was unexpectedly observed. The positive effect on cognition encourages to further evaluate the LD-RT therapeutic potential and highlights the impact of the design choice of the LD-RT regimen.


Subject(s)
Alzheimer Disease/psychology , Alzheimer Disease/radiotherapy , Dose Fractionation, Radiation , Memory , Alzheimer Disease/pathology , Animals , Disease Models, Animal , Female , Hippocampus/cytology , Microglia/physiology , Neuroinflammatory Diseases , Rats, Inbred F344 , Rats, Transgenic , Treatment Outcome
14.
Eur J Nucl Med Mol Imaging ; 48(7): 2200-2211, 2021 07.
Article in English | MEDLINE | ID: mdl-33638661

ABSTRACT

PURPOSE: Assess the individual and combined diagnostic value of amyloid-PET and tau-PET in a memory clinic population. METHODS: Clinical reports of 136 patients were randomly assigned to two diagnostic pathways: AMY-TAU, amyloid-PET is presented before tau-PET; and TAU-AMY, tau-PET is presented before amyloid-PET. Two neurologists independently assessed all reports with a balanced randomized design, and expressed etiological diagnosis and diagnostic confidence (50-100%) three times: (i) at baseline based on the routine diagnostic workup, (ii) after the first exam (amyloid-PET for the AMY-TAU pathway, and tau-PET for the TAU-AMY pathway), and (iii) after the remaining exam. The main outcomes were changes in diagnosis (from AD to non-AD or vice versa) and in diagnostic confidence. RESULTS: Amyloid-PET and tau-PET, when presented as the first exam, resulted in a change of etiological diagnosis in 28% (p = 0.006) and 28% (p < 0.001) of cases, and diagnostic confidence increased by 18% (p < 0.001) and 19% (p < 0.001) respectively, with no differences between exams (p > 0.05). We observed a stronger impact of a negative amyloid-PET versus a negative tau-PET (p = 0.014). When added as the second exam, amyloid-PET and tau-PET resulted in a further change in etiological diagnosis in 6% (p = 0.077) and 9% (p = 0.149) of cases, and diagnostic confidence increased by 4% (p < 0.001) and 5% (p < 0.001) respectively, with no differences between exams (p > 0.05). CONCLUSION: Amyloid-PET and tau-PET significantly impacted diagnosis and diagnostic confidence in a similar way, although a negative amyloid-PET has a stronger impact on diagnosis than a negative tau-PET. Adding either of the two as second exam further improved diagnostic confidence. TRIAL NUMBER: PB 2016-01346.


Subject(s)
Alzheimer Disease , Amyloidosis , Cognitive Dysfunction , Alzheimer Disease/diagnostic imaging , Amyloid , Amyloid beta-Peptides , Humans , Positron-Emission Tomography , tau Proteins
15.
Eur J Nucl Med Mol Imaging ; 49(1): 146-163, 2021 12.
Article in English | MEDLINE | ID: mdl-33433698

ABSTRACT

The 18 kDa translocator protein (TSPO) is a highly conserved protein located in the outer mitochondrial membrane. TSPO binding, as measured with positron emission tomography (PET), is considered an in vivo marker of neuroinflammation. Indeed, TSPO expression is altered in neurodegenerative, neuroinflammatory, and neuropsychiatric diseases. In PET studies, the TSPO signal is often viewed as a marker of microglial cell activity. However, there is little evidence in support of a microglia-specific TSPO expression. This review describes the cellular sources and functions of TSPO in animal models of disease and human studies, in health, and in central nervous system diseases. A discussion of methods of analysis and of quantification of TSPO is also presented. Overall, it appears that the alterations of TSPO binding, their cellular underpinnings, and the functional significance of such alterations depend on many factors, notably the pathology or the animal model under study, the disease stage, and the involved brain regions. Thus, further studies are needed to fully determine how changes in TSPO binding occur at the cellular level with the ultimate goal of revealing potential therapeutic pathways.


Subject(s)
Receptors, GABA , Tomography, X-Ray Computed , Animals , Brain/diagnostic imaging , Brain/metabolism , Humans , Microglia/metabolism , Positron-Emission Tomography , Receptors, GABA/genetics , Receptors, GABA/metabolism
16.
Genes Brain Behav ; 20(5): e12712, 2021 06.
Article in English | MEDLINE | ID: mdl-33150709

ABSTRACT

Alzheimer's disease (AD) is characterized by cognitive disorders and alterations of behavioral traits such as anhedonia and anxiety. Contribution of nonphysiological forms of amyloid and tau peptides to the onset of neurological dysfunctions remains unclear because most preclinical models only present one of those pathological AD-related biomarkers. A more recently developed model, the TgF344-AD rat has the advantage of overexpressing amyloid and naturally developing tauopathy, thus making it close to human familial forms of AD. We showed the presence of a learning dysfunction in a reference memory test, without spatial working memory impairment but with an increase in anxiety levels and a decrease in motivation to participate in the test. In the sucrose preference test, TgF344-AD rats did not show signs of anhedonia but did not increase the volume of liquid consumed when the water was replaced by sucrose solution. These behavioral phenomena were observed at an age when tau accumulation are absent, and where amyloid deposits are predominant in the hippocampus and the entorhinal cortex. Within the hippocampus itself, amyloid accumulation is heterogenous between the subiculum, the dorsal hippocampus and the ventral hippocampus. Thus, our data demonstrated heterogeneity in the appearance of various behavioral and neurochemical markers in the TgF344-AD rat. This multivariate analysis will therefore make it possible to define the stage of the pathology, to measure its evolution and the effects of future therapeutic treatments.


Subject(s)
Alzheimer Disease/physiopathology , Maze Learning , Memory, Short-Term , Alzheimer Disease/genetics , Animals , Entorhinal Cortex/physiopathology , Female , Hippocampus/physiopathology , Male , Rats , Rats, Inbred F344 , tau Proteins/genetics , tau Proteins/metabolism
17.
J Alzheimers Dis ; 77(3): 1043-1056, 2020.
Article in English | MEDLINE | ID: mdl-32804124

ABSTRACT

BACKGROUND: In vivo PET/SPECT imaging of neuroinflammation is primarily based on the estimation of the 18 kDa-translocator-protein (TSPO). However, TSPO is expressed by different cell types which complicates the interpretation. OBJECTIVE: The present study evaluates the cellular origin of TSPO alterations in Alzheimer's disease (AD). METHODS: The TSPO cell origin was evaluated by combining radioactive imaging approaches using the TSPO radiotracer [125I]CLINDE and fluorescence-activated cell sorting, in a rat model of AD (TgF344-AD) and in AD subjects. RESULTS: In the hippocampus of TgF344-AD rats, TSPO overexpression not only concerns glial cells but the increase is visible at 12 and 24 months in astrocytes and only at 24 months in microglia. In the temporal cortex of AD subjects, TSPO upregulation involved only glial cells. However, the mechanism of this upregulation appears different with an increase in the number of TSPO binding sites per cell without cell proliferation in the rat, and a microglial cell population expansion with a constant number of binding sites per cell in human AD. CONCLUSION: These data indicate an earlier astrocyte intervention than microglia and that TSPO in AD probably is an exclusive marker of glial activity without interference from other TSPO-expressing cells. This observation indicates that the interpretation of TSPO imaging depends on the stage of the pathology, and highlights the particular role of astrocytes.


Subject(s)
Alzheimer Disease/metabolism , Astrocytes/metabolism , Microglia/metabolism , Receptors, GABA/biosynthesis , Up-Regulation/physiology , Aged , Aged, 80 and over , Alzheimer Disease/pathology , Animals , Astrocytes/pathology , Female , Hippocampus/metabolism , Hippocampus/pathology , Humans , Male , Microglia/pathology , Rats , Rats, Inbred F344 , Rats, Transgenic
18.
Cells ; 9(9)2020 08 21.
Article in English | MEDLINE | ID: mdl-32839410

ABSTRACT

In the last decade, positron emission tomography (PET) and single-photon emission computed tomography (SPECT) in in vivo imaging has attempted to demonstrate the presence of neuroinflammatory reactions by measuring the 18 kDa translocator protein (TSPO) expression in many diseases of the central nervous system. We focus on two pathological conditions for which neuropathological studies have shown the presence of neuroinflammation, which translates in opposite in vivo expression of TSPO. Alzheimer's disease has been the most widely assessed with more than forty preclinical and clinical studies, showing overall that TSPO is upregulated in this condition, despite differences in the topography of this increase, its time-course and the associated cell types. In the case of schizophrenia, a reduction of TSPO has instead been observed, though the evidence remains scarce and contradictory. This review focuses on the key characteristics of TSPO as a biomarker of neuroinflammation in vivo, namely, on the cellular origin of the variations in its expression, on its possible biological/pathological role and on its variations across disease phases.


Subject(s)
Alzheimer Disease/physiopathology , Receptors, GABA/metabolism , Animals , Disease Models, Animal , Humans , Mice , Signal Transduction
19.
Curr Alzheimer Res ; 17(2): 112-125, 2020.
Article in English | MEDLINE | ID: mdl-32129164

ABSTRACT

Alzheimer's Disease (AD) is the most common neurodegenerative disease and cause of dementia. Characterized by amyloid plaques and neurofibrillary tangles of hyperphosphorylated Tau, AD pathology has been intensively studied during the last century. After a long series of failed trials of drugs targeting amyloid or Tau deposits, currently, hope lies in the positive results of one Phase III trial, highly debated, and on other ongoing trials. In parallel, some approaches target neuroinflammation, another central feature of AD. Therapeutic strategies are initially evaluated on animal models, in which the various drugs have shown effects on the target (decreasing amyloid, Tau and neuroinflammation) and sometimes on cognitive impairment. However, it is important to keep in mind that rodent models have a less complex brain than humans and that the pathology is generally not fully represented. Although they are indispensable tools in the drug discovery process, results obtained from animal models must be viewed with caution. In this review, we focus on the current status of disease-modifying therapies targeting amyloid, Tau and neuroinflammation with particular attention on the discrepancy between positive preclinical results on animal models and failures in clinical trials.


Subject(s)
Alzheimer Disease/drug therapy , Plaque, Amyloid/drug therapy , tau Proteins/drug effects , Amyloidogenic Proteins/drug effects , Humans , Neurofibrillary Tangles/drug effects , Randomized Controlled Trials as Topic
20.
Neurobiol Aging ; 90: 135-146, 2020 06.
Article in English | MEDLINE | ID: mdl-32171592

ABSTRACT

In Alzheimer disease (AD), astrocytes undergo complex changes and become reactive. The consequences of this reaction are still unclear. To evaluate the net impact of reactive astrocytes in AD, we developed viral vectors targeting astrocytes that either activate or inhibit the Janus kinase-signal transducer and activator of transcription 3 (JAK2-STAT3) pathway, a central cascade controlling astrocyte reaction. We aimed to evaluate whether reactive astrocytes contribute to tau as well as amyloid pathologies in the hippocampus of 3xTg-AD mice, an AD model that develops tau hyper-phosphorylation and amyloid deposition. JAK2-STAT3 pathway-mediated modulation of reactive astrocytes in 25% of the hippocampus of 3xTg-AD mice did not significantly influence tau phosphorylation or amyloid processing and deposition at early, advanced, and terminal disease stage. Interestingly, inhibition of the JAK2-STAT3 pathway in hippocampal astrocytes did not improve spatial memory in the Y maze but it did reduce anxiety in the elevated plus maze. Our unique approach to specifically manipulate reactive astrocytes in situ show they may impact behavioral outcomes without influencing tau or amyloid pathology.


Subject(s)
Alzheimer Disease/genetics , Alzheimer Disease/metabolism , Astrocytes/metabolism , Alzheimer Disease/pathology , Amyloidogenic Proteins/metabolism , Animals , Astrocytes/pathology , Disease Models, Animal , Hippocampus/cytology , Hippocampus/metabolism , Hippocampus/pathology , Janus Kinase 2/metabolism , Mice, Transgenic , Phosphorylation , STAT3 Transcription Factor/metabolism , Signal Transduction/genetics , tau Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...