Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Mater Sci Eng C Mater Biol Appl ; 109: 110493, 2020 Apr.
Article in English | MEDLINE | ID: mdl-32228953

ABSTRACT

Polyelectrolyte layer-by-layer (LbL) films that disintegrate under physiological conditions are intensively studied as coatings to enable the release of bioactive components. Herein, we report on the interactions and pH-stability of LbL films composed of chitosan (CH) or N-(2-hydroxypropyl)-3-trimethylammonium chitosan chloride (CMCH) and tannic acid (TA), employed to guarantee the film disintegration. The self-assembly of TA with CH and CMCH at pH 5 and with CMCH at pH 7.4 were proven by turbidimetric, surface plasmon resonance and UV-Vis analyses. The LbL films exhibited pH-dependent properties; CMCH/TA films prepared at pH 7.4 showed exponential growth as well as a higher layer thickness and surface roughness, whereas films prepared at pH 5 grew linearly and were smoother. The film stability varied with the pH used for film assembly; CH/TA films assembled at pH 5 were unstable at pH 8.5, whereas CMCH/TA films assembled at pH 7.4 disintegrated at pH 4. All films exhibited a similar disassembly at pH 7.4. The coatings reduced the adhesion of E. coli and S. aureus by approximately 80%. CMCH-terminated CMCH/TA films were more resistant to bacterial adhesion, whereas CH-terminated CH/TA films demonstrated stronger killing activity. The prepared pH-triggered decomposable LbL films could be used as degradable coatings that allow the release of therapeutics for biomedical applications and also prevent bacterial adhesion.


Subject(s)
Anti-Bacterial Agents/pharmacology , Biocompatible Materials/chemistry , Biocompatible Materials/pharmacology , Chitosan/chemistry , Tannins/chemistry , Escherichia coli/drug effects , Hydrogen-Ion Concentration , Motion Pictures , Staphylococcus aureus/drug effects
2.
Beilstein J Nanotechnol ; 6: 617-631, 2015.
Article in English | MEDLINE | ID: mdl-25821702

ABSTRACT

Composite materials based on a titanium support and a thin, alginate hydrogel could be used in bone tissue engineering as a scaffold material that provides biologically active molecules. The main objective of this contribution is to characterize the activation and the functionalization of titanium surfaces by the covalent immobilization of anchoring layers of self-assembled bisphosphonate neridronate monolayers and polymer films of 3-aminopropyltriethoxysilane and biomimetic poly(dopamine). These were further used to bind a bio-functional alginate coating. The success of the titanium surface activation, anchoring layer formation and alginate immobilization, as well as the stability upon immersion under physiological-like conditions, are demonstrated by different surface sensitive techniques such as spectroscopic ellipsometry, infrared reflection-absorption spectroscopy and X-ray photoelectron spectroscopy. The changes in morphology and the established continuity of the layers are examined by scanning electron microscopy, surface profilometry and atomic force microscopy. The changes in hydrophilicity after each modification step are further examined by contact angle goniometry.

SELECTION OF CITATIONS
SEARCH DETAIL
...