Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Mar Drugs ; 17(9)2019 Aug 29.
Article in English | MEDLINE | ID: mdl-31470614

ABSTRACT

A very powerful proteinaceous inhibitor of metallocarboxypeptidases has been isolated from the marine snail Nerita versicolor and characterized in depth. The most abundant of four, very similar isoforms, NvCla, was taken as reference and N-terminally sequenced to obtain a 372-nucleotide band coding for the protein cDNA. The mature protein contains 53 residues and three disulphide bonds. NvCIa and the other isoforms show an exceptionally high inhibitory capacity of around 1.8 pM for human Carboxypeptidase A1 (hCPA1) and for other A-like members of the M14 CPA subfamily, whereas a twofold decrease in inhibitory potency is observed for carboxypeptidase B-like members as hCPB and hTAFIa. A recombinant form, rNvCI, was produced in high yield and HPLC, mass spectrometry and spectroscopic analyses by CD and NMR indicated its homogeneous, compact and thermally resistant nature. Using antibodies raised with rNvCI and histochemical analyses, a preferential distribution of the inhibitor in the surface regions of the animal body was observed, particularly nearby the open entrance of the shell and gut, suggesting its involvement in biological defense mechanisms. The properties of this strong, small and stable inhibitor of metallocarboxypeptidases envisage potentialities for its direct applicability, as well as leading or minimized forms, in biotechnological/biomedical uses.


Subject(s)
Aquatic Organisms/chemistry , Proteins/antagonists & inhibitors , Snails/chemistry , Amino Acid Sequence , Animals , Base Sequence , Binding Sites , Cloning, Molecular/methods , DNA, Complementary/metabolism , Humans , Substrate Specificity
2.
J Proteomics ; 165: 75-92, 2017 08 08.
Article in English | MEDLINE | ID: mdl-28602552

ABSTRACT

Proteases and their inhibitors have become molecules of increasing fundamental and applicative value. Here we report an integrated strategy to identify and analyze such inhibitors from Caribbean marine invertebrates extracts by a fast and sensitive functional proteomics-like approach. The strategy works in three steps: i) multiplexed enzymatic inhibition kinetic assays, ii) Intensity Fading MALDI-TOF MS to establish a link between inhibitory molecules and the related MALDI signal(s) detected in the extract(s), and iii) ISD-CID-T3 MS fragmentation on the parent MALDI signals selected in the previous step, enabling the partial or total top-down sequencing of the molecules. The present study has allowed validation of the whole approach, identification of a substantial number of novel protein protease inhibitors, as well as full or partial sequencing of reference molecular species and of many unknown ones, respectively. Such inhibitors correspond to six protease subfamilies (metallocarboxypeptidases-A and -B, pepsin, papain, trypsin and subtilisin), are small (1-10KDa) disulfide-rich proteins, and have been found at diverse frequencies among the invertebrates (13 to 41%). The overall procedure could be tailored to other enzyme-inhibitor and protein interacting systems, analyzing samples at medium-throughput level and leading to the functional and structural characterization of proteinaceous ligands from complex biological extracts. SIGNIFICANCE: Invertebrate animals, and marine ones among, display a remarkable diversity of species and contained biomolecules. Many of their proteins-peptides have high biological, biotechnological and biomedical potential interest but, because of the lack of sequenced genomes behind, their structural and functional characterization constitutes a great challenge. Here, looking at the small, disulfide-rich, proteinaceous inhibitors of proteases found in them, it is shown that such problem can be significatively facilitated by integrative multiplexed enzymatic assays, affinity-based Intensity-Fading (IF-) MALDI-TOF mass spectrometry (MS), and on-line MS fragmentation, in a fast and easy approach.


Subject(s)
Protease Inhibitors/analysis , Proteomics/methods , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/methods , Animals , Aquatic Organisms , Disulfides , Invertebrates , Kinetics , Ligands
3.
J Biol Chem ; 287(19): 15427-38, 2012 May 04.
Article in English | MEDLINE | ID: mdl-22411994

ABSTRACT

This study describes a novel bifunctional metallocarboxypeptidase and serine protease inhibitor (SmCI) isolated from the tentacle crown of the annelid Sabellastarte magnifica. SmCI is a 165-residue glycoprotein with a molecular mass of 19.69 kDa (mass spectrometry) and 18 cysteine residues forming nine disulfide bonds. Its cDNA was cloned and sequenced by RT-PCR and nested PCR using degenerated oligonucleotides. Employing this information along with data derived from automatic Edman degradation of peptide fragments, the SmCI sequence was fully characterized, indicating the presence of three bovine pancreatic trypsin inhibitor/Kunitz domains and its high homology with other Kunitz serine protease inhibitors. Enzyme kinetics and structural analyses revealed SmCI to be an inhibitor of human and bovine pancreatic metallocarboxypeptidases of the A-type (but not B-type), with nanomolar K(i) values. SmCI is also capable of inhibiting bovine pancreatic trypsin, chymotrypsin, and porcine pancreatic elastase in varying measures. When the inhibitor and its nonglycosylated form (SmCI N23A mutant) were overproduced recombinantly in a Pichia pastoris system, they displayed the dual inhibitory properties of the natural form. Similarly, two bi-domain forms of the inhibitor (recombinant rSmCI D1-D2 and rSmCI D2-D3) as well as its C-terminal domain (rSmCI-D3) were also overproduced. Of these fragments, only the rSmCI D1-D2 bi-domain retained inhibition of metallocarboxypeptidase A but only partially, indicating that the whole tri-domain structure is required for such capability in full. SmCI is the first proteinaceous inhibitor of metallocarboxypeptidases able to act as well on another mechanistic class of proteases (serine-type) and is the first of this kind identified in nature.


Subject(s)
Carboxypeptidases/metabolism , Polychaeta/genetics , Serine Proteases/metabolism , Serine Proteinase Inhibitors/genetics , Amino Acid Sequence , Animals , Aprotinin/chemistry , Aprotinin/genetics , Aprotinin/pharmacology , Base Sequence , Binding Sites/genetics , Biocatalysis/drug effects , Carboxypeptidases/antagonists & inhibitors , Cattle , Cloning, Molecular , Dose-Response Relationship, Drug , Humans , Kinetics , Models, Molecular , Molecular Sequence Data , Molecular Weight , Protein Structure, Secondary , Protein Structure, Tertiary , Recombinant Proteins/chemistry , Recombinant Proteins/metabolism , Recombinant Proteins/pharmacology , Sequence Analysis, DNA , Serine Proteinase Inhibitors/chemistry , Serine Proteinase Inhibitors/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...