Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 46
Filter
1.
Pathogens ; 13(6)2024 May 27.
Article in English | MEDLINE | ID: mdl-38921753

ABSTRACT

Visceral leishmaniasis is a disease caused by protozoa of the species Leishmania (Leishmania) infantum (syn = Leishmania chagasi) and Leishmania (Leishmania) donovani, which are transmitted by hematophagous insects of the genera Lutzomyia and Phlebotomus. The domestic dog (Canis familiaris) is considered the main urban reservoir of the parasite due to the high parasite load on its skin, serving as a source of infection for sandfly vectors and, consequently, perpetuating the disease in the urban environment. Some factors are considered important in the perpetuation and spread of canine visceral leishmaniasis (CVL) in urban areas, such as stray dogs, with their errant behavior, and houses that have backyards with trees, shade, and organic materials, creating an attractive environment for sandfly vectors. CVL is found in approximately 50 countries, with the number of infected dogs reaching millions. However, due to the difficulty of controlling and diagnosing the disease, the number of infected animals could be even greater. In the four continents endemic for CVL, there are reports of disease expansion in endemic countries such as Brazil, Italy, Morocco, and Tunisia, as well as in areas where CVL is not endemic, for example, Uruguay. Socio-environmental factors, such as migration, drought, deforestation, and global warming, have been pointed out as reasons for the expansion into areas where it had been absent. Thus, the objective of this review is to address (i) the distribution of CVL in endemic areas, (ii) the role of the dog in the visceral leishmaniasis epidemiology and the factors that influence dog infection and the spread of the disease, and (iii) the challenges faced in the control of CVL.

2.
Front Pharmacol ; 15: 1403203, 2024.
Article in English | MEDLINE | ID: mdl-38873424

ABSTRACT

Visceral Leishmaniasis (VL) is a serious public health issue, documented in more than ninety countries, where an estimated 500,000 new cases emerge each year. Regardless of novel methodologies, advancements, and experimental interventions, therapeutic limitations, and drug resistance are still challenging. For this reason, based on previous research, we screened natural products (NP) from Nuclei of Bioassays, Ecophysiology, and Biosynthesis of Natural Products Database (NuBBEDB), Mexican Compound Database of Natural Products (BIOFACQUIM), and Peruvian Natural Products Database (PeruNPDB) databases, in addition to structural analogs of Miglitol and Acarbose, which have been suggested as treatments for VL and have shown encouraging action against parasite's N-glycan biosynthesis. Using computer-aided drug design (CADD) approaches, the potential inhibitory effect of these NP candidates was evaluated by inhibiting the Mannosyl-oligosaccharide Glucosidase Protein (MOGS) from Leishmania infantum, an enzyme essential for the protein glycosylation process, at various pH to mimic the parasite's changing environment. Also, computational analysis was used to evaluate the Absorption, Distribution, Metabolism, Excretion, and Toxicity (ADMET) profile, while molecular dynamic simulations were used to gather information on the interactions between these ligands and the protein target. Our findings indicated that Ocotillone and Subsessiline have potential antileishmanial effects at pH 5 and 7, respectively, due to their high binding affinity to MOGS and interactions in the active center. Furthermore, these compounds were non-toxic and had the potential to be administered orally. This research indicates the promising anti-leishmanial activity of Ocotillone and Subsessiline, suggesting further validation through in vitro and in vivo experiments.

3.
Parasite Immunol ; 46(5): e13037, 2024 May.
Article in English | MEDLINE | ID: mdl-38720446

ABSTRACT

The treatment for visceral leishmaniasis (VL) causes toxicity in patients, entails high cost and/or leads to the emergence of resistant strains. No human vaccine exists, and diagnosis presents problems related to the sensitivity or specificity of the tests. Here, we tested two phage clones, B1 and D11, which were shown to be protective against Leishmania infantum infection in a murine model as immunotherapeutics to treat mice infected with this parasite species. The phages were used alone or with amphotericin B (AmpB), while other mice received saline, AmpB, a wild-type phage (WTP) or WTP/AmpB. Results showed that the B1/AmpB and D11/AmpB combinations induced polarised Th1-type cellular and humoral responses, which were primed by high levels of parasite-specific IFN-γ, IL-12, TNF-α, nitrite and IgG2a antibodies, which reflected in significant reductions in the parasite load in distinct organs of the animals when analyses were performed 1 and 30 days after the treatments. Reduced organic toxicity was also found in these animals, as compared with the controls. In conclusion, preliminary data suggest the potential of the B1/AmpB and D11/AmpB combinations as immunotherapeutics against L. infantum infection.


Subject(s)
Amphotericin B , Antibodies, Protozoan , Immunotherapy , Leishmania infantum , Leishmaniasis, Visceral , Mice, Inbred BALB C , Leishmaniasis, Visceral/immunology , Leishmaniasis, Visceral/drug therapy , Animals , Amphotericin B/therapeutic use , Amphotericin B/administration & dosage , Antibodies, Protozoan/blood , Leishmania infantum/immunology , Leishmania infantum/drug effects , Mice , Immunotherapy/methods , Female , Antiprotozoal Agents/therapeutic use , Antiprotozoal Agents/administration & dosage , Immunoglobulin G/blood , Parasite Load , Disease Models, Animal , Cell Surface Display Techniques , Cytokines/metabolism , Th1 Cells/immunology
4.
Amino Acids ; 56(1): 35, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38698213

ABSTRACT

Chagas disease, caused by the protozoa Trypanosoma cruzi, continues to be a serious public health problem in Latin America, worsened by the limitations in its detection. Given the importance of developing new diagnostic methods for this disease, the present review aimed to verify the number of publications dedicated to research on peptides that demonstrate their usefulness in serodiagnosis. To this end, a bibliographic survey was conducted on the PubMed platform using the keyword "peptide" or "epitope" combined with "Chagas disease" or "Trypanosoma cruzi"; "diagno*" or "serodiagnosis" or "immunodiagnosis", without period restriction. An increasing number of publications on studies employing peptides in ELISA and rapid tests assays was verified, which confirms the expansion of research in this field. It is possible to observe that many of the peptides tested so far originate from proteins widely used in the diagnosis of Chagas, and many of them are part of commercial tests developed. In this sense, as expected, promising results were obtained for several peptides when tested in ELISA, as many of them exhibited sensitivity and specificity values above 90%. Furthermore, some peptides have been tested in several studies, confirming their diagnostic potential. Despite the promising results observed, it is possible to emphasize the need for extensive testing of peptides, using different serological panels, in order to confirm their potential. The importance of producing an effective assay capable of detecting the clinical stages of the disease, as well as new immunogenic antigens that enable new serological diagnostic tools for Chagas disease, is evident.


Subject(s)
Chagas Disease , Enzyme-Linked Immunosorbent Assay , Peptides , Trypanosoma cruzi , Chagas Disease/diagnosis , Chagas Disease/immunology , Chagas Disease/blood , Humans , Trypanosoma cruzi/immunology , Peptides/immunology , Peptides/chemistry , Enzyme-Linked Immunosorbent Assay/methods , Immunologic Tests/methods , Antigens, Protozoan/immunology , Antigens, Protozoan/blood , Serologic Tests/methods
5.
Microb Cell Fact ; 23(1): 145, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38778337

ABSTRACT

Recombinant multiepitope proteins (RMPs) are a promising alternative for application in diagnostic tests and, given their wide application in the most diverse diseases, this review article aims to survey the use of these antigens for diagnosis, as well as discuss the main points surrounding these antigens. RMPs usually consisting of linear, immunodominant, and phylogenetically conserved epitopes, has been applied in the experimental diagnosis of various human and animal diseases, such as leishmaniasis, brucellosis, cysticercosis, Chagas disease, hepatitis, leptospirosis, leprosy, filariasis, schistosomiasis, dengue, and COVID-19. The synthetic genes for these epitopes are joined to code a single RMP, either with spacers or fused, with different biochemical properties. The epitopes' high density within the RMPs contributes to a high degree of sensitivity and specificity. The RMPs can also sidestep the need for multiple peptide synthesis or multiple recombinant proteins, reducing costs and enhancing the standardization conditions for immunoassays. Methods such as bioinformatics and circular dichroism have been widely applied in the development of new RMPs, helping to guide their construction and better understand their structure. Several RMPs have been expressed, mainly using the Escherichia coli expression system, highlighting the importance of these cells in the biotechnological field. In fact, technological advances in this area, offering a wide range of different strains to be used, make these cells the most widely used expression platform. RMPs have been experimentally used to diagnose a broad range of illnesses in the laboratory, suggesting they could also be useful for accurate diagnoses commercially. On this point, the RMP method offers a tempting substitute for the production of promising antigens used to assemble commercial diagnostic kits.


Subject(s)
Epitopes , Escherichia coli , Recombinant Proteins , Escherichia coli/genetics , Escherichia coli/metabolism , Recombinant Proteins/genetics , Recombinant Proteins/biosynthesis , Recombinant Proteins/immunology , Humans , Epitopes/immunology , Epitopes/genetics , Immunologic Tests/methods , Animals , COVID-19/diagnosis
6.
Pathogens ; 13(3)2024 Feb 23.
Article in English | MEDLINE | ID: mdl-38535539

ABSTRACT

Sarcocystis spp. are coccidian protozoans belonging to the Apicomplexa phylum. As with other members of this phylum, they are obligate intracellular parasites with complex cellular machinery for the invasion of host cells. Sarcocystis spp. display dixenous life cycles, involving a predator and a prey as definitive and intermediate hosts, respectively. Specifically, these parasites develop sarcocysts in the tissues of their intermediate hosts, ranging in size from microscopic to visible to the naked eye, depending on the species. When definitive hosts consume sarcocysts, infective forms are produced in the digestive system and discharged into the environment via feces. Consumption of oocyst-contaminated water and pasture by the intermediate host completes the parasitic cycle. More than 200 Sarcocystis spp. have been described to infect wildlife, domestic animals, and humans, some of which are of economic or public health importance. Interestingly, Old World camelids (dromedary, domestic Bactrian camel, and wild Bactrian camel) and New World or South American camelids (llama, alpaca, guanaco, and vicuña) can each be infected by two different Sarcocystis spp: Old World camelids by S. cameli (producing micro- and macroscopic cysts) and S. ippeni (microscopic cysts); and South American camelids by S. aucheniae (macroscopic cysts) and S. masoni (microscopic cysts). Large numbers of Old and New World camelids are bred for meat production, but the finding of macroscopic sarcocysts in carcasses significantly hampers meat commercialization. This review tries to compile the information that is currently accessible regarding the biology, epidemiology, phylogeny, and diagnosis of Sarcocystis spp. that infect Old and New World camelids. In addition, knowledge gaps will be identified to encourage research that will lead to the control of these parasites.

7.
Trop Med Infect Dis ; 9(2)2024 Feb 03.
Article in English | MEDLINE | ID: mdl-38393130

ABSTRACT

Visceral Leishmaniasis (VL) has a high death rate, with 500,000 new cases and 50,000 deaths occurring annually. Despite the development of novel strategies and technologies, there is no adequate treatment for the disease. Therefore, the purpose of this study is to find structural analogs of natural products as potential novel drugs to treat VL. We selected structural analogs from natural products that have shown antileishmanial activities, and that may impede the purine salvage pathway using computer-aided drug-design (CADD) approaches. For these, we started with the vastly studied target in the pathway, the adenine phosphoribosyl transferase (APRT) protein, which alone is non-essential for the survival of the parasite. Keeping this in mind, we search for a substance that can bind to multiple targets throughout the pathway. Computational techniques were used to study the purine salvage pathway from Leishmania infantum, and molecular dynamic simulations were used to gather information on the interactions between ligands and proteins. Because of its low homology to human proteins and its essential role in the purine salvage pathway proteins network interaction, the findings further highlight the significance of adenylosuccinate lyase protein (ADL) as a therapeutic target. An analog of the alkaloid Skimmianine, N,N-diethyl-4-methoxy-1-benzofuran-6-carboxamide, demonstrated a good binding affinity to APRT and ADL targets, no expected toxicity, and potential for oral route administration. This study indicates that the compound may have antileishmanial activity, which was granted in vitro and in vivo experiments to settle this finding in the future.

8.
Vet Sci ; 10(10)2023 Sep 22.
Article in English | MEDLINE | ID: mdl-37888541

ABSTRACT

The blood-sucking mites Dermanyssus gallinae ("red mite"), Ornithonyssus sylviarum ("northern fowl mite"), and Ornithonyssus bursa ("tropical fowl mite") stand out for causing infestations in commercial poultry farms worldwide, resulting in significant economic damage for producers. In addition to changes in production systems that include new concerns for animal welfare, global climate change in recent years has become a major challenge in the spread of ectoparasites around the world. This review includes information regarding the main form of controlling poultry mites through the use of commercially available chemicals. In addition, non-chemical measures against blood-sucking mites were discussed such as extracts and oils from plants and seeds, entomopathogenic fungi, semiochemicals, powder such as diatomaceous earth and silica-based products, and vaccine candidates. The control of poultry mites using chemical methods that are currently used to control or eliminate them are proving to be less effective as mites develop resistance. In contrast, the products based on plant oils and extracts, powders of plant origin, fungi, and new antigens aimed at developing transmission-blocking vaccines against poultry mites provide some encouraging options for the rational control of these ectoparasites.

9.
Vaccines (Basel) ; 11(10)2023 Oct 05.
Article in English | MEDLINE | ID: mdl-37896969

ABSTRACT

Dogs with visceral leishmaniasis play a key role in the transmission cycle of Leishmania infantum to humans in the urban environment. There is a consensus regarding the importance of developing a vaccine to control this disease. Despite many efforts to develop a protective vaccine against CVL, the ones currently available, Leish-tec® and LetiFend®, have limited effectiveness. This is due, in part, to the complexity of the immune response of the naturally infected dogs against the parasite and the complexity of the parasite transmission cycle. Thus, strategies, such as the development of a transmission-blocking vaccines (TBVs) already being applied to other vector-borne diseases like malaria and dengue, would be an attractive alternative to control leishmaniasis. TBVs induce the production of antibodies in the vertebrate host, which can inhibit parasite development in the vector and/or interfere with aspects of vector biology, leading to an interruption of parasite transmission. To date, there are few TBV studies for CVL and other leishmaniasis forms. However, the few studies that exist show promising results, thus justifying the further development of this approach.

10.
F1000Res ; 12: 93, 2023.
Article in English | MEDLINE | ID: mdl-37424744

ABSTRACT

Introduction: Leishmaniasis is a disease with high mortality rates and approximately 1.5 million new cases each year. Despite the new approaches and advances to fight the disease, there are no effective therapies. Methods: Hence, this study aims to screen for natural products' structural analogs as new drug candidates against leishmaniasis. We applied Computer-aided drug design (CADD) approaches, such as virtual screening, molecular docking, molecular dynamics simulation, molecular mechanics-generalized Born surface area (MM-GBSA) binding free estimation, and free energy perturbation (FEP) aiming to select structural analogs from natural products that have shown anti-leishmanial and anti-arginase activities and that could bind selectively against the Leishmania arginase enzyme. Results: The compounds 2H-1-benzopyran, 3,4-dihydro-2-(2-methylphenyl)-(9CI), echioidinin, and malvidin showed good results against arginase targets from three parasite species and negative results for potential toxicities. The echioidinin and malvidin ligands generated interactions in the active center at pH 2.0 conditions by MM-GBSA and FEP methods. Conclusions: This work suggests the potential anti-leishmanial activity of the compounds and thus can be further in vitro and in vivo experimentally validated.


Subject(s)
Biological Products , Drug Design , Leishmania , Leishmaniasis , Humans , Arginase/metabolism , Arginase/pharmacology , Arginase/therapeutic use , Biological Products/pharmacology , Leishmania/metabolism , Leishmaniasis/drug therapy , Molecular Docking Simulation
11.
Curr Mol Med ; 2023 Jul 17.
Article in English | MEDLINE | ID: mdl-37461338

ABSTRACT

BACKGROUND: Monkeypox is a global public health issue caused by the monkeypox virus (MPXV). As of October 28, 2022, a total of 77,115 laboratory-confirmed cases and 3,610 probable cases, including 36 deaths, were reported, with 9,070 cases reported in Brazil, the second most affected country. The need to develop national technologies for the rapid diagnosis of emerging diseases for mass testing of the population is evident, as observed in the SARS-CoV-2 pandemic. OBJECTIVE: With that in mind, this article provides an overview of current methods, techniques, and their applications in the molecular detection of monkeypox, focusing the search on real-time polymerase chain reaction (qPCR), polymerase chain reaction (PCR), and polymerase chain reaction-enzyme linked immunosorbent assay (PCR-ELISA). METHODS: The relevant documents or papers covered in this study were selected by a search in international bibliographic databases. The search terms used in the databases were aimed at summarizing existing knowledge on molecular diagnostic methods, such as monkeypox; MPX, MPXV, qPCR, PCR, PCR-ELISA, diagnosis and detection searched separately or together using the Boolean operator "AND" either in the title or abstract. The searches took place in September 2022, and the corresponding articles were selected between 2012 and 2022. RESULTS: We found 256 documents in total and twelve studies addressing the molecular diagnosis of monkeypox were classified as possible sources for this review. CONCLUSION: It is evident there is a pressing need to develop national technologies for rapid diagnosis of emerging diseases for mass testing of the population. It is also extremely important to have national detection kits with greater diagnostic capacity to assist in developing effective public policies in countries affected by this disease.

12.
Diagnostics (Basel) ; 13(9)2023 Apr 26.
Article in English | MEDLINE | ID: mdl-37174941

ABSTRACT

In this paper, we present a systematic review and meta-analysis that aims to evaluate the reliability of coronavirus disease diagnostic tests in 2019 (COVID-19). This article seeks to describe the scientific discoveries made because of diagnostic tests conducted in recent years during the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic. Between 2020 and 2021, searches for published papers on the COVID-19 diagnostic were made in the PubMed database. Ninety-nine scientific articles that satisfied the requirements were analyzed and included in the meta-analysis, and the specificity and sensitivity of the diagnostic accuracy were assessed. When compared to serological tests such as the enzyme-linked immunosorbent assay (ELISA), chemiluminescence immunoassay (CLIA), lateral flow immunoassay (LFIA), and chemiluminescent microparticle immunoassay (CMIA), molecular tests such as reverse transcription polymerase chain reaction (RT-PCR), reverse transcription loop-mediated isothermal amplification (RT-LAMP), and clustered regularly interspaced short palindromic repeats (CRISPR) performed better in terms of sensitivity and specificity. Additionally, the area under the curve restricted to the false-positive rates (AUCFPR) of 0.984 obtained by the antiviral neutralization bioassay (ANB) diagnostic test revealed significant potential for the identification of COVID-19. It has been established that the various diagnostic tests have been effectively adapted for the detection of SARS-CoV-2; nevertheless, their performance still must be enhanced to contain potential COVID-19 outbreaks, which will also help contain potential infectious agent outbreaks in the future.

13.
Sci Rep ; 13(1): 7577, 2023 05 10.
Article in English | MEDLINE | ID: mdl-37165197

ABSTRACT

Since the number of drugs based on natural products (NPs) represents a large source of novel pharmacological entities, NPs have acquired significance in drug discovery. Peru is considered a megadiverse country with many endemic species of plants, terrestrial, and marine animals, and microorganisms. NPs databases have a major impact on drug discovery development. For this reason, several countries such as Mexico, Brazil, India, and China have initiatives to assemble and maintain NPs databases that are representative of their diversity and ethnopharmacological usage. We describe the assembly, curation, and chemoinformatic evaluation of the content and coverage in chemical space, as well as the physicochemical attributes and chemical diversity of the initial version of the Peruvian Natural Products Database (PeruNPDB), which contains 280 natural products. Access to PeruNPDB is available for free ( https://perunpdb.com.pe/ ). The PeruNPDB's collection is intended to be used in a variety of tasks, such as virtual screening campaigns against various disease targets or biological endpoints. This emphasizes the significance of biodiversity protection both directly and indirectly on human health.


Subject(s)
Biological Products , Animals , Humans , Peru , Drug Evaluation, Preclinical , Biological Products/pharmacology , Biological Products/chemistry , Databases, Factual , Drug Discovery
14.
Curr Mol Med ; 2023 May 04.
Article in English | MEDLINE | ID: mdl-37143281

ABSTRACT

BACKGROUND: schistosomiasis is a neglected tropical parasitic disease caused by trematode worms of the genus schistosoma, which affects approximately 240 million people worldwide. the diagnosis of the disease can be performed by parasitological, molecular, and/or immunological methods, however, the development of new diagnostic methods still essential to guide policy decisions, monitor disease trends and assess the effectiveness of interventions. OBJECTIVE: in this sense, the current work summarizes the findings of a systematic review regarding antigens applied in the enzyme-linked immunosorbent assay test, which were patented and published over the last ten years. METHODS: the literature search strategy used medical subject heading (mesh) terms to define as descriptors. "schistosoma mansoni" was used in arrangement with the descriptors "immunoassay", "enzyme-linked immunosorbent assay", "elisa", and "antigens", using the "and" connector. the patent search was done using keywords, including diagnosis and schistosoma or schistosomiasis or schistosome. several databases were employed for the patent search, such as intellectual property national institute; european patent office; the united states patent and trademark office; patent scope, and google patents. RESULTS: forty-one articles were retrieved, of which only five met the eligibility criteria. seventeen patents were taken from the databases, and a brief description of the most relevant inventions is given here. CONCLUSION: schistosomiasis is considered the most important helminthic disease in worldwide. therefore, it is important to of searching for and develops diagnostic methods based on serology to reduce morbidity and mortality caused by the disease.

15.
Front Mol Neurosci ; 16: 1104585, 2023.
Article in English | MEDLINE | ID: mdl-36873109

ABSTRACT

Evidence suggests that there may be racial differences in risk factors associated with the development of Alzheimer's disease and related dementia (ADRD). We used whole-genome sequencing analysis and identified a novel combination of three pathogenic variants in the heterozygous state (UNC93A: rs7739897 and WDR27: rs61740334; rs3800544) in a Peruvian family with a strong clinical history of ADRD. Notably, the combination of these variants was present in two generations of affected individuals but absent in healthy members of the family. In silico and in vitro studies have provided insights into the pathogenicity of these variants. These studies predict that the loss of function of the mutant UNC93A and WDR27 proteins induced dramatic changes in the global transcriptomic signature of brain cells, including neurons, astrocytes, and especially pericytes and vascular smooth muscle cells, indicating that the combination of these three variants may affect the neurovascular unit. In addition, known key molecular pathways associated with dementia spectrum disorders were enriched in brain cells with low levels of UNC93A and WDR27. Our findings have thus identified a genetic risk factor for familial dementia in a Peruvian family with an Amerindian ancestral background.

16.
Protein Pept Lett ; 30(5): 374-383, 2023.
Article in English | MEDLINE | ID: mdl-36998139

ABSTRACT

Monkeypox is a zoonosis that re-emerged in 2022, generating cases in non-endemic countries for the disease and creating a public health issue. The rapid increase in the number of cases kindles a need for quick, inexpensive diagnostic tests for the epidemiological control of the disease. The high cost of molecular tests can make this control more difficult to access in poorer regions, with immunological tests being a more viable option. In this mini-review, a search was conducted in the main databases for peptide and protein options that could be used in the development of serological diagnostic tests. Nine viable registres were found, and seven were selected (two patents and five studies). The main studies used the B21R peptide sequence as it is a high immunogenic epitope. In addition, studies on the improvement of these sequences were also found to avoid cross-reactions against other viruses of the same family, proposing a rational approach using multiepitope recombinant proteins. These approaches demonstrated high sensitivity and specificity values and are seen as viable options for developing new tests. New effective serological testing options, when combined with awareness, disease surveillance, early diagnosis, and rapid communication, form a set of key strategies used by health systems to control the spread of the monkeypox virus.


Subject(s)
Mpox (monkeypox) , Humans , Mpox (monkeypox)/epidemiology , Peptides , Amino Acid Sequence , Recombinant Proteins , Serologic Tests
17.
Pathogens ; 12(2)2023 Feb 03.
Article in English | MEDLINE | ID: mdl-36839519

ABSTRACT

Malaria is a parasitic infection that is a great public health concern and is responsible for high mortality rates worldwide. Different strategies have been employed to improve disease control, demonstrating the ineffectiveness of controlling vectors, and parasite resistance to antimalarial drugs requires the development of an effective preventive vaccine. There are countless challenges to the development of such a vaccine directly related to the parasite's complex life cycle. After more than four decades of basic research and clinical trials, the World Health Organization (WHO) has recommended the pre-erythrocytic Plasmodium falciparum (RTS, S) malaria vaccine for widespread use among children living in malaria-endemic areas. However, there is a consensus that major improvements are needed to develop a vaccine with a greater epidemiological impact in endemic areas. This review discusses novel strategies for malaria vaccine design taking the target stages within the parasite cycle into account. The design of the multi-component vaccine shows considerable potential, especially as it involves transmission-blocking vaccines (TBVs) that eliminate the parasite's replication towards sporozoite stage parasites during a blood meal of female anopheline mosquitoes. Significant improvements have been made but additional efforts to achieve an efficient vaccine are required to improve control measures. Different strategies have been employed, thus demonstrating the ineffectiveness in controlling vectors, and parasite resistance to antimalarial drugs requires the development of a preventive vaccine. Despite having a vaccine in an advanced stage of development, such as the RTS, S malaria vaccine, the search for an effective vaccine against malaria is far from over. This review discusses novel strategies for malaria vaccine design taking into account the target stages within the parasite's life cycle.

18.
Pathogens ; 12(2)2023 Feb 11.
Article in English | MEDLINE | ID: mdl-36839574

ABSTRACT

BACKGROUND: visceral leishmaniasis (VL) is a critical public health problem in over ninety countries. The control measures adopted in Brazil have been insufficient when it comes to preventing the spread of this overlooked disease. In this context, a precise diagnosis of VL in dogs and humans could help to reduce the number of cases of this disease. Distinct studies for the diagnosis of VL have used single recombinant proteins in serological assays; however, the results have been variable, mainly in relation to the sensitivity of the antigens. In this context, the development of multiepitope-based proteins could be relevant to solving such problem. METHODS: a chimeric protein (rMELEISH) was constructed based on amino acid sequences from kinesin 39 (k39), alpha-tubulin, and heat-shock proteins HSP70 and HSP 83.1, and tested in enzyme-linked immunosorbent (ELISA) for the detection of L. infantum infection using canine (n = 140) and human (n = 145) sera samples. RESULTS: in the trials, rMELEISH was able to discriminate between VL cases and cross-reactive diseases and healthy samples, with sensitivity and specificity values of 100%, as compared to the use of a soluble Leishmania antigenic extract (SLA). CONCLUSIONS: the preliminary data suggest that rMELEISH has the potential to be tested in future studies against a larger serological panel and in field conditions for the diagnosis of canine and human VL.

19.
Pathogens ; 12(2)2023 Feb 14.
Article in English | MEDLINE | ID: mdl-36839584

ABSTRACT

Chagas disease remains a neglected disease that is considered to be a public health problem. The early diagnosis of cases is important to improve the prognosis of infected patients and prevent transmission. Serological tests are the method of choice for diagnosis. However, two serological tests are currently recommended to confirm positive cases. In this sense, more sensitive and specific serological tests need to be developed to overcome these current diagnosis problems. This study aimed to develop a new recombinant multiepitope protein for the diagnosis of Chagas disease, hereafter named rTC. The rTC was constructed based on amino acid sequences from different combinations of Trypanosoma cruzi antigens in the same polypeptide and tested using an enzyme-linked immunosorbent assay (ELISA) to detect different types of Chagas disease. rTC was able to discriminate between indeterminate (IND) and cardiac (CARD) cases and cross-reactive diseases, as well as healthy samples, with 98.28% sensitivity and 96.67% specificity, respectively. These data suggest that rTC has the potential to be tested in future studies against a larger serological panel for the diagnosis of Chagas disease.

20.
Vaccines (Basel) ; 11(1)2023 Jan 02.
Article in English | MEDLINE | ID: mdl-36679956

ABSTRACT

Visceral leishmaniasis (VL) is a fatal disease caused by the protozoa Leishmania infantum for which dogs are the main reservoirs. A vaccine against canine visceral leishmaniasis (CVL) could be an important tool in the control of human and CVL by reducing the infection pressure of L. infantum. Despite the CVL vaccine available on the market, the Brazilian Ministry of Health did not implement the use of it in their control programs. In this sense, there is an urgent need to develop more efficient vaccines. In this study, the association between two polymeric nanoformulations, (poly (D, L-lactic) acid (PLA) polymer) loading Leishmania amazonensis antigens, was evaluated as a potential immunobiological agent against VL using golden hamsters as an experimental model. The results indicated that no significant adverse reactions were observed in animals vaccinated with LAPSmP. LAPSmP presented similar levels of total anti-Leishmania IgG as compared to LAPSmG. The LAPSmP and LAPSmG groups showed an intense reduction in liver and spleen parasitic load by qPCR. The LAPSmP and LAPSmG vaccines showed exceptional results, indicating that they may be promising candidates as a VL vaccine.

SELECTION OF CITATIONS
SEARCH DETAIL
...