Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
RSC Adv ; 9(32): 18420-18428, 2019 Jun 10.
Article in English | MEDLINE | ID: mdl-35515224

ABSTRACT

For the first time, CZTS ink was formulated using low-temperature heating up synthesis of NCs. Besides, the influence of powder concentration on the properties of the films was examined. Subsequently, the CZTS films were annealed under a selenium (Se)/argon (Ar) atmosphere at different temperatures to enhance their properties. The influence of selenization temperature on the properties of CZTS films was examined in detail. Structural analysis showed a peak shift towards lower 2θ values for CZTSSe films because of Se incorporation, resulting in larger lattice parameters for CZTSSe than CZTS. As the selenization temperature increases, an increment in the grain size was observed and the band gap was decreased from 1.52 to 1.05 eV. Hall Effect studies revealed a significant improvement in the mobility and carrier concentration with respect to selenization temperatures. Moreover, film selenized at 550 °C exhibited higher photoconductivity as compared to other films, indicating their potential application in the field of low-cost thin-film solar cells.

2.
J Nanosci Nanotechnol ; 6(7): 2103-9, 2006 Jul.
Article in English | MEDLINE | ID: mdl-17025133

ABSTRACT

In this work a co-precipitation route was used to synthesise two yttria-stabilised-zirconia (YSZ) phases with different concentrations of alumina (Al2O3). A tetragonal, with 3 mol% yttria, and a cubic, with 8 mol% yttria, phases were added with alumina in different weight proportions, 90/10, 80/20, 70/30, and 60/40, respectively. After synthesised, products were sintered in a range 800-1100 degrees C for different intervals of time. Compounds were characterised by X-ray diffraction, transmission electron microscopy (TEM), high resolution transmission electron microscopy (HRTEM), scanning electron microscopy (SEM), and atomic force microscopy (AFM). Rietveld refinements, using FULPROF-Suite software, were carried out to obtain the cell parameters and structural characterisation of products.


Subject(s)
Aluminum Oxide/chemistry , Crystallization/methods , Dental Porcelain/chemistry , Nanostructures/chemistry , Nanostructures/ultrastructure , Nanotechnology/methods , Yttrium/chemistry , Macromolecular Substances/chemistry , Materials Testing , Molecular Conformation , Particle Size , Surface Properties , Zirconium
SELECTION OF CITATIONS
SEARCH DETAIL
...