Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Planta ; 259(3): 53, 2024 Jan 31.
Article in English | MEDLINE | ID: mdl-38294549

ABSTRACT

MAIN CONCLUSION: The biostimulant Hanseniaspora opuntiae regulates Arabidopsis thaliana root development and resistance to Botrytis cinerea. Beneficial microbes can increase plant nutrient accessibility and uptake, promote abiotic stress tolerance, and enhance disease resistance, while pathogenic microorganisms cause plant disease, affecting cellular homeostasis and leading to cell death in the most critical cases. Commonly, plants use specialized pattern recognition receptors to perceive beneficial or pathogen microorganisms. Although bacteria have been the most studied plant-associated beneficial microbes, the analysis of yeasts is receiving less attention. This study assessed the role of Hanseniaspora opuntiae, a fermentative yeast isolated from cacao musts, during Arabidopsis thaliana growth, development, and defense response to fungal pathogens. We evaluated the A. thaliana-H. opuntiae interaction using direct and indirect in vitro systems. Arabidopsis growth was significantly increased seven days post-inoculation with H. opuntiae during indirect interaction. Moreover, we observed that H. opuntiae cells had a strong auxin-like effect in A. thaliana root development during in vitro interaction. We show that 3-methyl-1-butanol and ethanol are the main volatile compounds produced by H. opuntiae. Subsequently, it was determined that A. thaliana plants inoculated with H. opuntiae have a long-lasting and systemic effect against Botrytis cinerea infection, but independently of auxin, ethylene, salicylic acid, or jasmonic acid pathways. Our results demonstrate that H. opuntiae is an important biostimulant that acts by regulating plant development and pathogen resistance through different hormone-related responses.


Subject(s)
Arabidopsis , Botrytis , Hanseniaspora , Indoleacetic Acids
2.
Plant Physiol Biochem ; 156: 494-503, 2020 Nov.
Article in English | MEDLINE | ID: mdl-33049445

ABSTRACT

During plant-microbe interactions, polyamines participate in the plant defense response. Previously, we reported that silencing of ADC genes in Arabidopsis thaliana causes a drastic reduction of polyamine levels as well as increments in reactive oxygen species content. In this study, we examined the response of the adc-silenced line to Botrytis cinerea and Pseudomonas syringae infection. The adc-silenced line was more susceptible to Botrytis cinerea, showing larger lesion length and a higher incidence of fungal infection. Pre-treatments with putrescine reestablished the response of the adc-silenced line to Botrytis cinerea, resulting in a similar phenotype to the parental plant. Expression levels of defense-related genes were analyzed during fungal infection showing that the salicylic acid-induced gene PR1 was up-regulated, while the jasmonic acid-related genes LOX3 and PDF1.2, as well as, the camalexin biosynthetic gene PAD3 were down-regulated in the adc-silenced line. Furthermore, methyl jasmonate pre-treatments reduced Botrytis cinerea infection in the adc-silenced line. On the other hand, the adc-silenced line showed an increased resistance to Pseudomonas syringae infection. SA-related genes such as PR1, ZAT1.2, WRKY54 and WRKY70 were highly expressed in the adc-silenced line upon bacterial interaction. Our data show that the adc-silenced line has altered the defense-response against Botrytis cinerea and Pseudomonas syringae, that is consistent with deregulation of SA- and JA-mediated response pathways.


Subject(s)
Arabidopsis Proteins , Arabidopsis/genetics , Genes, Plant , Plant Diseases/genetics , Arabidopsis/microbiology , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Botrytis/pathogenicity , Cyclopentanes , Gene Expression Regulation, Plant , Gene Silencing , Oxylipins , Plant Diseases/microbiology , Pseudomonas syringae/pathogenicity , Salicylic Acid
SELECTION OF CITATIONS
SEARCH DETAIL
...