Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
J Clin Med ; 12(4)2023 Feb 07.
Article in English | MEDLINE | ID: mdl-36835858

ABSTRACT

Manifestations of COVID-19 are diverse and range from asymptomatic to severe, critical illness and death. Cases requiring hospital care (in severe and critical illnesses) are associated with comorbidities and hyperactivation of the immune system. Therefore, in this exploratory observational study, we analyzed which parameters are associated with mortality. We evaluated: demographic characteristics (age, sex and comorbidities), laboratory data (albumin, leukocytes, lymphocytes, platelets, ferritin), days of hospital stay, interleukins (IL-2, IL-6, IL-7, IL-10, IL-17) and sP-selectin in 40 Mexican patients admitted to medical emergencies with a confirmed diagnosis of COVID-19, a complete clinical record, and who signed the informed consent. Twenty severe (they required intermediate care with non-invasive ventilation) and twenty critically ill patients (they required mechanical ventilation) were classified, and these were subsequently compared with healthy and recovered subjects. A significant difference was found between the hospitalized groups in the parameters of age, ferritin, days of hospital stay and death with p values = 0.0145, p = 0.0441, p = 0.0001 and p = 0.0001, respectively. In the determination of cytokines and P-selectin, a significant difference was found between the following groups: recovered patients and healthy volunteers compared with hospitalized patients in severe and critical condition. Importantly, IL-7 remained elevated one year later in recovered patients. Taken together, these values determined at the time of hospital admission could be useful to monitor patients closely and evaluate in-hospital progress, hospital discharge, and out-of-hospital progress.

2.
Am J Infect Control ; 48(9): 1037-1041, 2020 09.
Article in English | MEDLINE | ID: mdl-32645473

ABSTRACT

INTRODUCTION: One of the serious consequences of the SARS-CoV-2 pandemic is the shortage of protective equipment for health personnel. N95 masks are considered one of the essential protective equipment in the management of patients with COVID-19. The shortage of N95 masks implies potential health risks for health personnel and significant economic losses for the health institution. The objective of this work was to investigate the disinfection of N95 masks artificially contaminated with SARS-CoV-2 and ESKAPE bacteria by using hydrogen peroxide plasma. MATERIAL AND METHODS: We examined the disinfection capacity of hydrogen peroxide plasma against the SARS-CoV-2 and 2 members of the ESKAPE bacteria (Acinetobacter baumannii and Staphylococcus aureus) through a study of artificial contamination in situ of N95 masks. Amplification of specific genes by real-time reverse transcription polymerase chain reaction of SARS-CoV-2 and microbiological culture of ESKAPE bacteria was performed before and after the disinfection process. RESULTS: SARS-CoV-2 was not detected in all assays using 5 different concentrations of the virus, and A baumannii and S aureus were not cultivable with inoculums of 102 to 106 CFU after disinfection tests of N95 masks with hydrogen peroxide plasma. CONCLUSION: Disinfection of N95 masks by using the hydrogen peroxide plasma technology can be an alternative for their reuse in a shortage situation. Implications for the use of disinfection technologies of N95 masks and the safety of health personnel are discussed.


Subject(s)
Anti-Infective Agents, Local/administration & dosage , Betacoronavirus/drug effects , Coronavirus Infections/prevention & control , Disinfection/methods , Equipment Reuse , Hydrogen Peroxide/administration & dosage , Masks/microbiology , Pandemics/prevention & control , Pneumonia, Viral/prevention & control , Acinetobacter baumannii/drug effects , COVID-19 , Humans , Respiratory Protective Devices/microbiology , SARS-CoV-2 , Staphylococcus aureus/drug effects
3.
BMC Musculoskelet Disord ; 17: 79, 2016 Feb 15.
Article in English | MEDLINE | ID: mdl-26875674

ABSTRACT

BACKGROUND: FBN1 (15q21.1) encodes fibrillin-1, a large glycoprotein which is a major component of microfibrils that are widely distributed in structural elements of elastic and non-elastic tissues. FBN1 variants are responsible for the related connective tissue disorders, grouped under the generic term of type-1 fibrillinopathies, which include Marfan syndrome (MFS), MASS syndrome (Mitral valve prolapse, Aortic enlargement, Skin and Skeletal findings, Acromicric dysplasia, Familial ectopia lentis, Geleophysic dysplasia 2, Stiff skin syndrome, and dominant Weill-Marchesani syndrome. CASE PRESENTATION: Two siblings presented with isolated skeletal manifestations of MFS, including severe pectus excavatum, elongated face, scoliosis in one case, and absence of other clinical features according to Ghent criteria diagnosis, were screened for detection of variants in whole FBN1 gene (65 exons). Both individuals were heterozygous for the R2726W variant. This variant has been previously reported in association with some skeletal features of Marfan syndrome in the absence of both tall stature and non-skeletal features. These features are consistent with the presentation of the siblings reported here. CONCLUSION: The presented cases confirm that the R2726W FBN1 variant is associated with skeletal features of MFS in the absence of cardiac or ocular findings. These findings confirm that FBN1 variants are associated with a broad phenotypic spectrum and the value of sequencing in atypical cases.


Subject(s)
Genetic Variation/genetics , Heterozygote , Marfan Syndrome/diagnosis , Marfan Syndrome/genetics , Microfilament Proteins/genetics , Siblings , Adolescent , Bone Diseases, Developmental/diagnosis , Bone Diseases, Developmental/genetics , Female , Fibrillin-1 , Fibrillins , Humans , Male , Pedigree
4.
Tumour Biol ; 36(12): 9649-59, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26150337

ABSTRACT

Extracellular vesicles (EVs) mediate many stages of tumor progression including angiogenesis, escape from immune surveillance, and extracellular matrix degradation. We studied whether EVs from plasma of women with breast cancer are able to induce an epithelial-mesenchymal transition (EMT) process in mammary epithelial cells MCF10A. Our findings demonstrate that EVs from plasma of breast cancer patients induce a downregulation of E-cadherin expression and an increase of vimentin and N-cadherin expression. Moreover, EVs induce migration and invasion, as well as an increase of NFκB-DNA binding activity and MMP-2 and MMP-9 secretions. In summary, our findings demonstrate, for the first time, that EVs from breast cancer patients induce an EMT-like process in human mammary non-tumorigenic epithelial cells MCF10A.


Subject(s)
Breast Neoplasms/blood , Extracellular Vesicles/pathology , Mammary Glands, Human/pathology , Plasma/metabolism , Breast Neoplasms/pathology , Cell Line , Epithelial-Mesenchymal Transition , Extracellular Vesicles/metabolism , Female , Gene Expression Regulation, Neoplastic , Humans , Neoplasm Proteins/biosynthesis
5.
Arch Med Res ; 44(3): 208-14, 2013 Apr.
Article in English | MEDLINE | ID: mdl-23506723

ABSTRACT

BACKGROUND AND AIMS: Breast cancer is the most common cancer and the main cause of cancer deaths in women worldwide. Microvesicles (MVs) are fragments of the plasma membrane secreted from cytoplasmic membrane compartments by normal and malignant cells. An increase in MV number has been found in peripheral blood of patients with several diseases including cancer. We hypothesized that MV number and the relative amount of focal adhesion kinase (FAK) and epidermal growth factor receptor (EGFR) proteins in plasma fractions enriched in MVs and deprived of platelet-derived MVs are related to the presence of breast cancer. METHODS: Plasma fractions enriched in MVs and deprived of platelet-derived MVs were obtained by differential centrifugation of blood samples. MV number was evaluated by BD TruCOUNT Tubes (BD Biosciences). FAK and EGFR proteins were analyzed by Western blot. RESULTS: MV number in plasma fractions enriched with MVs and deprived of platelet-derived MVs is higher in breast cancer patients with stages I-IV as well as with T2-T4 tumors, in comparison to control group. In addition, plasma fractions enriched in MVs present FAK and EGFR proteins and their amount is increased in some stages of breast cancer in comparison to control group. CONCLUSIONS: Our findings strongly suggest that MV number and the amount of FAK and EGFR in plasma fractions enriched in MVs are associated with some stages of breast cancer.


Subject(s)
Breast Neoplasms/blood , Breast Neoplasms/pathology , Cell Membrane/metabolism , Cytoplasmic Vesicles , Adult , Aged , Aged, 80 and over , Blood Platelets/cytology , Breast Neoplasms/enzymology , Breast Neoplasms/metabolism , ErbB Receptors/metabolism , Female , Focal Adhesion Kinase 1/metabolism , Focal Adhesion Protein-Tyrosine Kinases/metabolism , Humans , Middle Aged , Plasma/cytology , Plasma/enzymology
SELECTION OF CITATIONS
SEARCH DETAIL
...