Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Publication year range
1.
Viruses ; 15(3)2023 03 08.
Article in English | MEDLINE | ID: mdl-36992411

ABSTRACT

The extracellular vesicles (EVs) in a tumoral microenvironment can exert different functions by transferring their content, which has been poorly described in cervical cancer. Here, we tried to clarify the proteomic content of these EVs, comparing those derived from cancerous HPV (+) keratinocytes (HeLa) versus those derived from normal HPV (-) keratinocytes (HaCaT). We performed a quantitative proteomic analysis, using LC-MS/MS, of the EVs from HeLa and HaCaT cell lines. The up- and downregulated proteins in the EVs from the HeLa cell line were established, along with the cellular component, molecular function, biological processes, and signaling pathways in which they participate. The biological processes with the highest number of upregulated proteins are cell adhesion, proteolysis, lipid metabolic process, and immune system processes. Interestingly, three of the top five signaling pathways with more up- and downregulated proteins are part of the immune response. Due to their content, we can infer that EVs can have a significant role in migration, invasion, metastasis, and the activation or suppression of immune system cells in cancer.


Subject(s)
Extracellular Vesicles , Papillomavirus Infections , Uterine Cervical Neoplasms , Female , Humans , Uterine Cervical Neoplasms/metabolism , Chromatography, Liquid , HeLa Cells , Proteomics , Papillomavirus Infections/metabolism , Tandem Mass Spectrometry , Extracellular Vesicles/metabolism , Proteins/metabolism , Tumor Microenvironment
2.
Enferm. infecc. microbiol. clín. (Ed. impr.) ; 38(4): 159-165, abr. 2020. ilus, tab
Article in English | IBECS | ID: ibc-200681

ABSTRACT

INTRODUCTION: The main cause of cervical cancer is an infection of keratinocytes in the basal layer of the stratified epithelium of the cervix by human papillomavirus (HPV). Other than in cervical samples, HPV DNA has been found in serum and other fluids but its origin is unclear. Extracellular vesicles (EV) could be a conveyance of viral DNA given their emerging role in cellular communication. The content of EV derived from cervical cells has not been properly explored and it is not known whether or not they contain HPV DNA. METHODS: We evaluated the DNA content of exosomes purified from cultures of HeLa cells by Next Generation Sequencing (NGS) and confirmed its presence by PCR. The presence of HPV DNA was also evaluated by PCR and NGS in EV from HPV-positive cervical samples without apparent lesion or with LSIL. RESULTS: We detected the integrated form of viral-DNA in exosomes from HeLa cells by NGS and confirmed its presence by PCR. The search for HPV sequences in EV obtained from cervical exudate samples without apparent lesion or with LSIL, where we expected to find the viral genome as an episome, indicated that HPV DNA, including the E6 and E7 oncogenes, is present in these EV. CONCLUSIÓN: HPV DNA, including the viral oncogenes E6/E7, is found in exosomes regardless of the integration status of the virus in the infected cell


INTRODUCCIÓN: La principal causa del cáncer de cérvix es la infección de los queratinocitos de la capa basal del epitelio estratificado del cuello uterino por el virus del papiloma humano (VPH). El ADN del VPH se ha encontrado en muestras cervicales, pero también en suero y otros fluidos, aunque su origen en estos últimos no está claro. Las vesículas extracelulares (VE) podrían ser el medio de transporte del ADN viral considerando su papel emergente en la comunicación celular. El contenido de las VE derivadas de células cervicales ha sido poco explorado y la presencia en ellas de ADN de VPH sigue siendo desconocida. MÉTODOS: Evaluamos el ADN de exosomas purificados a partir de cultivos de células HeLa mediante secuenciación de nueva generación (NGS) y confirmamos su presencia a través de PCR. La presencia de ADN de VPH también se evaluó mediante PCR y NGS en VE de muestras cervicales positivas a VPH, sin lesión aparente o con LSIL. RESULTADOS: Detectamos la forma integrada del ADN viral en exosomas de células HeLa mediante NGS, y confirmamos su presencia a través de PCR. La búsqueda de secuencias de VPH en VE obtenidas a partir de muestras de exudado cervical sin lesión aparente o con LSIL, donde esperamos encontrar el genoma viral en forma episomal, indicó que el DNA de VPH incluyendo los oncogenes E6 y E7, está presente en estas VE. CONCLUSIÓN: El ADN del VPH incluyendo el correspondiente con los oncogenes virales E6/E7 se encuentra en exosomas independientemente del estado de integración del virus en la célula infectada


Subject(s)
Humans , Female , Papillomaviridae/genetics , Exosomes/virology , Genome, Viral , DNA, Viral/isolation & purification , HeLa Cells , Polymerase Chain Reaction , High-Throughput Nucleotide Sequencing
3.
Enferm Infecc Microbiol Clin (Engl Ed) ; 38(4): 159-165, 2020 Apr.
Article in English, Spanish | MEDLINE | ID: mdl-31395428

ABSTRACT

INTRODUCTION: The main cause of cervical cancer is an infection of keratinocytes in the basal layer of the stratified epithelium of the cervix by human papillomavirus (HPV). Other than in cervical samples, HPV DNA has been found in serum and other fluids but its origin is unclear. Extracellular vesicles (EV) could be a conveyance of viral DNA given their emerging role in cellular communication. The content of EV derived from cervical cells has not been properly explored and it is not known whether or not they contain HPV DNA. METHODS: We evaluated the DNA content of exosomes purified from cultures of HeLa cells by Next Generation Sequencing (NGS) and confirmed its presence by PCR. The presence of HPV DNA was also evaluated by PCR and NGS in EV from HPV-positive cervical samples without apparent lesion or with LSIL. RESULTS: We detected the integrated form of viral-DNA in exosomes from HeLa cells by NGS and confirmed its presence by PCR. The search for HPV sequences in EV obtained from cervical exudate samples without apparent lesion or with LSIL, where we expected to find the viral genome as an episome, indicated that HPV DNA, including the E6 and E7 oncogenes, is present in these EV. CONCLUSION: HPV DNA, including the viral oncogenes E6/E7, is found in exosomes regardless of the integration status of the virus in the infected cell.


Subject(s)
Cervix Uteri/virology , DNA, Viral/isolation & purification , Extracellular Vesicles , Papillomavirus Infections , Extracellular Vesicles/virology , Female , HeLa Cells , Humans , Oncogene Proteins, Viral/genetics , Papillomavirus Infections/diagnosis
4.
Arch Med Res ; 49(5): 323-334, 2018 07.
Article in English | MEDLINE | ID: mdl-30401587

ABSTRACT

BACKGROUND: This study presents a prediction of putative miRNA within several Human Papillomavirus (HPV) types by using bioinformatics tools and a strategy based on sequence and structure alignment. Currently, little is known about HPV miRNAs. METHODS: Computational methods have been widely applied in the identification of novel miRNAs when analyzing genome sequences. Here, ten whole-genome sequences from HPV-6, -11, -16, -18, -31, -33, -35, -45, -52, and -58 were analyzed. Software based on local contiguous structure-sequence features and support vector machine (SVM), as well as additional bioinformatics tools, were utilized for identification and classification of real and pseudo microRNA precursors. RESULTS: An initial analysis predicted 200 putative pre-miRNAs for all the ten HPV genome variants. To derive a smaller set of pre-miRNAs candidates, stringent validation criteria was conducted by applying <‒10 ΔG value (Gibbs Free Energy). Thus, only pre-miRNAs with total scores above the cut-off points of 90% were considered as putative pre-miRNAs. As a result of this strategy, 19 pre-miRNAs were selected (hpv-pre-miRNAs). These novel pre-miRNAs were located in different clusters within HPV genomes and some of them were positioned at splice regions. Additionally, the 19 identified pre-miRNAs sequences varied between HPV genotypes. Interestingly, the newly identified miRNAs, 297, 27b, 500, 501-5, and 509-3-5p, were closely implicated in carcinogenesis participating in cellular longevity, cell cycle, metastasis, apoptosis evasion, tissue invasion and cellular growth pathways. CONCLUSIONS: The novel putative miRNAs candidates could be promising biomarkers of HPV infection and furthermore, could be targeted for potential therapeutic interventions in HPV-induced malignancies.


Subject(s)
Computational Biology/methods , Genome, Viral , MicroRNAs/analysis , Papillomaviridae/genetics , Sequence Alignment/methods , Sequence Homology, Nucleic Acid , Base Sequence , DNA, Viral/analysis , High-Throughput Nucleotide Sequencing/methods , Host-Pathogen Interactions/genetics , Humans , MicroRNAs/genetics , Papillomaviridae/pathogenicity , Papillomavirus Infections/genetics , Papillomavirus Infections/virology , Sequence Analysis, DNA/methods
5.
Hematology ; 16(6): 368-72, 2011 Nov.
Article in English | MEDLINE | ID: mdl-22183072

ABSTRACT

This study evaluates the prognostic value of MAGE-A3 expression in 28 diffuse large B-cell lymphoma (DLBCL) patients. A significant association was observed between MAGE-A3 expressions, assessed by quantitative real-time RT-polymerase chain reaction (PCR), with advanced stages of disease (P < 0.05). Elevated serum lactate dehydrogenase (LDH) levels and International Prognostic Index (IPI) score were significantly higher in MAGE-A3-positive patients (P = 0.025 and P = 0.004, respectively). Expression of MAGE-A3 was associated with poor response to treatment and a significantly shorter overall survival (P < 0.001). Our data address new information in the association of MAGE-A3 expression and poor prognosis in DLBCL patients.


Subject(s)
Antigens, Neoplasm/genetics , Gene Expression Regulation, Neoplastic , Lymphoma, Large B-Cell, Diffuse/genetics , Neoplasm Proteins/genetics , Adolescent , Adult , Aged , Antigens, Neoplasm/metabolism , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Blotting, Western , Female , Humans , L-Lactate Dehydrogenase/blood , Lymphoma, Large B-Cell, Diffuse/drug therapy , Lymphoma, Large B-Cell, Diffuse/metabolism , Male , Middle Aged , Neoplasm Proteins/metabolism , Neoplasm Staging , Prognosis , Reverse Transcriptase Polymerase Chain Reaction , Survival Analysis , Time Factors , Treatment Outcome , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...