Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Ecology ; 92(7): 1448-58, 2011 Jul.
Article in English | MEDLINE | ID: mdl-21870619

ABSTRACT

How organisms allocate limited resources to reproduction is critical to their fitness. The size and number of offspring produced have been the focus of many studies. Offspring size affects survival and growth and determines offspring number in the many species where there is a trade-off between size and number. Many social insects reproduce by colony fission, whereby young queens and accompanying workers split off from a colony to form new colonies. The size of a new colony (number of workers) is set at the time of the split, and this may allow fine tuning size to local conditions. Despite the prevalence of colony fission and the ecological importance of social insects, little is known of colony fission except in honey bees. We studied colony fission in the ant Cataglyphis cursor. For clarity, "colony" and "nest" refer to colonies before and after colony fission, respectively (i.e., each colony fissions into several nests). The reproductive effort of colonies was highly variable: Colonies that fissioned varied markedly in size, and many colonies that did not fission were as large as some of the fissioning colonies. The mother queen was replaced in half of the fissioning colonies, which produced 4.0 +/- 1.3 (mean +/- SD) nests of markedly varied size. Larger fissioning colonies produced larger nests but did not produce more nests, and resource allocation among nests was highly biased. When a colony produced several nests and the mother queen was not replaced, the nest containing the mother queen was larger than nests with a young queen. These results show that the pattern of resource allocation differs between C. cursor and honey bees. They also suggest that C. cursor may follow a bet-hedging strategy with regard to both the colony size at which fission occurs and the partitioning of resources among nests. In addition, colony fission may be influenced by the age and/or condition of the mother queen, and the fact that workers allocating resources among nests have incomplete knowledge of the size and number of nests produced. These results show that the process of colony fission is more diverse than currently acknowledged and that studies of additional species are needed.


Subject(s)
Ants/physiology , Demography , Ecosystem , Animals , Behavior, Animal , Models, Biological , Social Behavior
2.
Mol Ecol ; 20(9): 2011-22, 2011 May.
Article in English | MEDLINE | ID: mdl-21449906

ABSTRACT

In genetically diverse insect societies (polygynous or polyandrous queens), the production of new queens can set the ground for competition among lineages. This competition can be very intense when workers can reproduce using thelytoky as worker lineages that manage to produce new queens gain a huge benefit. Selection at the individual level might then lead to the evolution of cheating genotypes, i.e. genotypes that reproduce more than their fair share. We studied the variation in reproductive success among worker patrilines in the thelytokous and highly polyandrous ant Cataglyphis cursor. Workers produce new queens by thelytoky in orphaned colonies. The reproductive success of each patriline was assessed in 13 orphaned colonies using genetic analysis of 433 workers and 326 worker-produced queens. Our results show that patrilines contributed unequally to queen production in half of the colonies, and the success of patrilines was function of their frequencies in workers. However, over all colonies, we observed a significant difference in the distribution of patrilines between workers and worker-produced queens, and this difference was significant in three of 13 colonies. In addition, six colonies contained a low percentage of foreign workers (drifters), and in one colony, they produced a disproportionably high number of queens. Hence, we found some evidence for the occurrence of rare cheating genotypes. Nevertheless, cheating appears to be less pronounced than in the Cape Honey bee, a species with a similar reproductive system. We argue that worker reproduction by parthenogenesis might not be common in natural populations of C. cursor.


Subject(s)
Ants/genetics , Ants/physiology , Parthenogenesis , Animals , Biological Evolution , Genotype , Microsatellite Repeats/genetics , Reproduction , Sexual Behavior, Animal , Social Behavior
3.
Ecology ; 91(11): 3312-21, 2010 Nov.
Article in English | MEDLINE | ID: mdl-21141192

ABSTRACT

Intraspecific competition is a pervasive phenomenon with important ecological and evolutionary consequences, yet its effect in natural populations remains controversial. Although numerous studies suggest that in many cases populations across all organisms are limited by density-dependent processes, this conclusion often relies on correlative data. Here, using an experimental approach, we examined the effect of intraspecific competition on population regulation of the ant Aphaenogaster senilis. In this species females are philopatric while males disperse by flying over relatively long distances. All colonies were removed from 15 experimental plots, except for one focal colony in each plot, while 15 other plots remained unmanipulated. After the first reproductive season, nest density in the experimental plots returned to a level nonsignificantly different from that in the control plots, which was not expected if the populations were indeed regulated by density-independent phenomena. In both the control plots and the experimental plots colonies remained overdispersed throughout the experiment, suggesting colony mutual exclusion. Nests outside the plots rapidly extended their foraging span, but we did not detect any significant inward migration into the experimental plots. Experimental reduction in density did not significantly affect the focal colonies' biomass, measured just before the first reproductive season. However, the ratio of males to workers-pupae biomasses was smaller in experimental plots, suggesting that colonies there had redirected part of the resources normally allocated to male production to the production instead of new workers. Microsatellite analysis indicated that, after the reproductive season, many colonies in the experimental plots were headed by a young queen that was the mother of the brood but not of the old workers, indicating that reduction in colony density stimulated fission of the remaining colonies. Finally, at the end of the experiment, 14 months after experimental reduction in density, colonies that derived from fission were smaller in the experimental than in the control plots, suggesting that the former had undergone fission at a smaller size than in control plots, which presumably allowed them to colonize the emptied areas. We conclude that colonies adjust resource allocation and colony fission to the degree of intraspecific competition.


Subject(s)
Ants/physiology , Animals , Demography , Female , Male , Social Behavior , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...