Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
IEEE Trans Pattern Anal Mach Intell ; 43(2): 623-637, 2021 Feb.
Article in English | MEDLINE | ID: mdl-31369369

ABSTRACT

Much progress has been made for non-rigid structure from motion (NRSfM) during the last two decades, which made it possible to provide reasonable solutions for synthetically-created benchmark data. In order to utilize these NRSfM techniques in more realistic situations, however, we are now facing two important problems that must be solved: First, general scenes contain complex deformations as well as multiple objects, which violates the usual assumptions of previous NRSfM proposals. Second, there are many unreconstructable regions in the video, either because of the discontinued tracks of 2D trajectories or those regions static towards the camera, which require careful manipulations. In this paper, we show that a consensus-based reconstruction framework can handle these issues effectively. Even though the entire scene is complex, its parts usually have simpler deformations, and even though there are some unreconstructable parts, they can be weeded out to reduce their harmful effect on the entire reconstruction. The main difficulty of this approach lies in identifying appropriate parts, however, it can be effectively avoided by sampling parts stochastically and then aggregate their reconstructions afterwards. Experimental results show that the proposed method renews the state-of-the-art for popular benchmark data under much harsher environments, i.e., narrow camera view ranges, and it can reconstruct video-based real-world data effectively for as many areas as it can without an elaborated user input.

2.
Sensors (Basel) ; 19(23)2019 Nov 29.
Article in English | MEDLINE | ID: mdl-31795509

ABSTRACT

Compound eyes, also known as insect eyes, have a unique structure. They have a hemispheric surface, and a lot of single eyes are deployed regularly on the surface. Thanks to this unique form, using the compound images has several advantages, such as a large field of view (FOV) with low aberrations. We can exploit these benefits in high-level vision applications, such as object recognition, or semantic segmentation for a moving robot, by emulating the compound images that describe the captured scenes from compound eye cameras. In this paper, to the best of our knowledge, we propose the first convolutional neural network (CNN)-based ego-motion classification algorithm designed for the compound eye structure. To achieve this, we introduce a voting-based approach that fully utilizes one of the unique features of compound images, specifically, the compound images consist of a lot of single eye images. The proposed method classifies a number of local motions by CNN, and these local classifications which represent the motions of each single eye image, are aggregated to the final classification by a voting procedure. For the experiments, we collected a new dataset for compound eye camera ego-motion classification which contains scenes of the inside and outside of a certain building. The samples of the proposed dataset consist of two consequent emulated compound images and the corresponding ego-motion class. The experimental results show that the proposed method has achieved the classification accuracy of 85.0%, which is superior compared to the baselines on the proposed dataset. Also, the proposed model is light-weight compared to the conventional CNN-based image recognition algorithms such as AlexNet, ResNet50, and MobileNetV2.


Subject(s)
Image Processing, Computer-Assisted , Motion , Neural Networks, Computer , Video Recording/instrumentation , Algorithms , Animals , Compound Eye, Arthropod , Humans , Surface Properties
3.
Sensors (Basel) ; 14(3): 5516-35, 2014 Mar 20.
Article in English | MEDLINE | ID: mdl-24658618

ABSTRACT

There is a growing interest in 3D content following the recent developments in 3D movies, 3D TVs and 3D smartphones. However, 3D content creation is still dominated by professionals, due to the high cost of 3D motion capture instruments. The availability of a low-cost motion capture system will promote 3D content generation by general users and accelerate the growth of the 3D market. In this paper, we describe the design and implementation of a real-time motion capture system based on a portable low-cost wireless camera sensor network. The proposed system performs motion capture based on the data-driven 3D human pose reconstruction method to reduce the computation time and to improve the 3D reconstruction accuracy. The system can reconstruct accurate 3D full-body poses at 16 frames per second using only eight markers on the subject's body. The performance of the motion capture system is evaluated extensively in experiments.


Subject(s)
Computer Communication Networks/instrumentation , Computer Systems , Motion , Software , Wireless Technology/instrumentation , Databases as Topic , Humans , Image Processing, Computer-Assisted , Joints/physiology , Models, Anatomic , Photography/instrumentation , Posture , Range of Motion, Articular
SELECTION OF CITATIONS
SEARCH DETAIL
...