Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 35
Filter
Add more filters










Publication year range
1.
bioRxiv ; 2023 Aug 23.
Article in English | MEDLINE | ID: mdl-37662349

ABSTRACT

MAFA and MAFB are related basic-leucine-zipper domain containing transcription factors which have important regulatory roles in a variety of cellular contexts, including pancreatic islet hormone producing α and ß cells. These proteins have similar as well as distinct functional properties, and here we first used AlphaFold2, an artificial intelligence-based structural prediction program, to obtain insight into the three-dimensional organization of their non-DNA binding/dimerization sequences. This analysis was conducted on the wildtype (WT) proteins as well the pathogenic MAFA Ser64Phe (MAFA S64F ) and MAFB Ser70Ala (MAFB S70A ) mutants, with structural differences revealed between MAFA WT and MAFB WT in addition to MAFA S64F and MAFA WT , but not MAFB S70A and MAFB WT . Functional analysis disclosed that the inability to properly phosphorylate at S70 in MAFB S70A , like S65 in MAFA S64F , greatly increased protein stability and enabled MAFB S70A to accelerate cellular senescence in cultured cells. Significant differences were also observed in the ability of MAFA, MAFA S64F , MAFB, and MAFB S70A to cooperatively stimulate Insulin enhancer-driven activity in the presence of other islet-enriched transcription factors. Experiments performed on protein chimeras disclosed that these properties were greatly influenced by structural differences found between the WT and mutant proteins. In general, these results revealed that AlphaFold2 predicts features essential to protein activity.

2.
Front Endocrinol (Lausanne) ; 14: 1212716, 2023.
Article in English | MEDLINE | ID: mdl-37720527

ABSTRACT

Cellular senescence is a response to a wide variety of stressors, including DNA damage, oncogene activation and physiologic aging, and pathologically accelerated senescence contributes to human disease, including diabetes mellitus. Indeed, recent work in this field has demonstrated a role for pancreatic ß-cell senescence in the pathogenesis of Type 1 Diabetes, Type 2 Diabetes and monogenic diabetes. Small molecule or genetic targeting of senescent ß-cells has shown promise as a novel therapeutic approach for preventing and treating diabetes. Despite these advances, major questions remain around the molecular mechanisms driving senescence in the ß-cell, identification of molecular markers that distinguish senescent from non-senescent ß-cell subpopulations, and translation of proof-of-concept therapies into novel treatments for diabetes in humans. Here, we summarize the current state of the field of ß-cell senescence, highlighting insights from mouse models as well as studies on human islets and ß-cells. We identify markers that have been used to detect ß-cell senescence to unify future research efforts in this field. We discuss emerging concepts of the natural history of senescence in ß-cells, heterogeneity of senescent ß-cells subpopulations, role of sex differences in senescent responses, and the consequences of senescence on integrated islet function and microenvironment. As a young and developing field, there remain many open research questions which need to be addressed to move senescence-targeted approaches towards clinical investigation.


Subject(s)
Diabetes Mellitus, Type 1 , Diabetes Mellitus, Type 2 , Female , Male , Humans , Animals , Mice , Diabetes Mellitus, Type 2/therapy , Aging , Cellular Senescence , DNA Damage
3.
JCI Insight ; 8(16)2023 08 22.
Article in English | MEDLINE | ID: mdl-37606041

ABSTRACT

Type 2 diabetes (T2D) is associated with compromised identity of insulin-producing pancreatic islet ß cells, characterized by inappropriate production of other islet cell-enriched hormones. Here, we examined how hormone misexpression was influenced by the MAFA and MAFB transcription factors, closely related proteins that maintain islet cell function. Mice specifically lacking MafA in ß cells demonstrated broad, population-wide changes in hormone gene expression with an overall gene signature closely resembling islet gastrin+ (Gast+) cells generated under conditions of chronic hyperglycemia and obesity. A human ß cell line deficient in MAFB, but not one lacking MAFA, also produced a GAST+ gene expression pattern. In addition, GAST was detected in human T2D ß cells with low levels of MAFB. Moreover, evidence is provided that human MAFB can directly repress GAST gene transcription. These results support a potentially novel, species-specific role for MafA and MAFB in maintaining adult mouse and human ß cell identity, respectively. Here, we discuss the possibility that induction of Gast/GAST and other non-ß cell hormones, by reduction in the levels of these transcription factors, represents a dysfunctional ß cell signature.


Subject(s)
Diabetes Mellitus, Type 2 , Insulin-Secreting Cells , Islets of Langerhans , Adult , Humans , Animals , Mice , MafB Transcription Factor/genetics , Insulin
5.
Cell Rep ; 37(2): 109813, 2021 10 12.
Article in English | MEDLINE | ID: mdl-34644565

ABSTRACT

A heterozygous missense mutation of the islet ß cell-enriched MAFA transcription factor (p.Ser64Phe [S64F]) is found in patients with adult-onset ß cell dysfunction (diabetes or insulinomatosis), with men more prone to diabetes than women. This mutation engenders increased stability to the unstable MAFA protein. Here, we develop a S64F MafA mouse model to determine how ß cell function is affected and find sex-dependent phenotypes. Heterozygous mutant males (MafAS64F/+) display impaired glucose tolerance, while females are slightly hypoglycemic with improved blood glucose clearance. Only MafAS64F/+ males show transiently higher MafA protein levels preceding glucose intolerance and sex-dependent changes to genes involved in Ca2+ signaling, DNA damage, aging, and senescence. MAFAS64F production in male human ß cells also accelerate cellular senescence and increase senescence-associated secretory proteins compared to cells expressing MAFAWT. These results implicate a conserved mechanism of accelerated islet aging and senescence in promoting diabetes in MAFAS64F carriers in a sex-biased manner.


Subject(s)
Cellular Senescence , Diabetes Mellitus, Type 2/metabolism , Insulin-Secreting Cells/metabolism , Maf Transcription Factors, Large/metabolism , Animals , Animals, Genetically Modified , Blood Glucose/metabolism , Calcium Signaling , Cell Line , DNA Damage , Diabetes Mellitus, Type 2/genetics , Diabetes Mellitus, Type 2/pathology , Disease Models, Animal , Female , Genetic Predisposition to Disease , Humans , Insulin/blood , Insulin-Secreting Cells/pathology , Maf Transcription Factors, Large/genetics , Male , Mice, Inbred C57BL , Mutation, Missense , Phenotype , Sex Characteristics , Sex Factors
6.
J Clin Endocrinol Metab ; 106(1): 153-167, 2021 01 01.
Article in English | MEDLINE | ID: mdl-32961557

ABSTRACT

CONTEXT: Polycystic ovary syndrome (PCOS) is one of the leading causes of infertility, yet current diagnostic criteria are ineffective at identifying patients whose symptoms reside outside strict diagnostic criteria. As a result, PCOS is underdiagnosed and its etiology is poorly understood. OBJECTIVE: We aim to characterize the phenotypic spectrum of PCOS clinical features within and across racial and ethnic groups. METHODS: We developed a strictly defined PCOS algorithm (PCOSkeyword-strict) using the International Classification of Diseases, ninth and tenth revisions and keywords mined from clinical notes in electronic health records (EHRs) data. We then systematically relaxed the inclusion criteria to evaluate the change in epidemiological and genetic associations resulting in 3 subsequent algorithms (PCOScoded-broad, PCOScoded-strict, and PCOSkeyword-broad). We evaluated the performance of each phenotyping approach and characterized prominent clinical features observed in racially and ethnically diverse PCOS patients. RESULTS: The best performance came from the PCOScoded-strict algorithm, with a positive predictive value of 98%. Individuals classified as cases by this algorithm had significantly higher body mass index (BMI), insulin levels, free testosterone values, and genetic risk scores for PCOS, compared to controls. Median BMI was higher in African American females with PCOS compared to White and Hispanic females with PCOS. CONCLUSIONS: PCOS symptoms are observed across a severity spectrum that parallels the continuous genetic liability to PCOS in the general population. Racial and ethnic group differences exist in PCOS symptomology and metabolic health across different phenotyping strategies.


Subject(s)
Algorithms , Electronic Health Records , Polycystic Ovary Syndrome , Adolescent , Adult , Case-Control Studies , Data Interpretation, Statistical , Data Mining/methods , Electronic Health Records/statistics & numerical data , Ethnicity/genetics , Ethnicity/statistics & numerical data , Female , Genetic Predisposition to Disease/ethnology , Humans , Multifactorial Inheritance , Phenotype , Polycystic Ovary Syndrome/diagnosis , Polycystic Ovary Syndrome/ethnology , Polycystic Ovary Syndrome/genetics , Predictive Value of Tests , Racial Groups/genetics , Racial Groups/statistics & numerical data , Risk Factors , Tennessee/epidemiology , Young Adult
7.
Cell Metab ; 32(6): 1028-1040.e4, 2020 12 01.
Article in English | MEDLINE | ID: mdl-33207245

ABSTRACT

Isolated reports of new-onset diabetes in individuals with COVID-19 have led to the hypothesis that SARS-CoV-2 is directly cytotoxic to pancreatic islet ß cells. This would require binding and entry of SARS-CoV-2 into ß cells via co-expression of its canonical cell entry factors, angiotensin-converting enzyme 2 (ACE2) and transmembrane serine protease 2 (TMPRSS2); however, their expression in human pancreas has not been clearly defined. We analyzed six transcriptional datasets of primary human islet cells and found that ACE2 and TMPRSS2 were not co-expressed in single ß cells. In pancreatic sections, ACE2 and TMPRSS2 protein was not detected in ß cells from donors with and without diabetes. Instead, ACE2 protein was expressed in islet and exocrine tissue microvasculature and in a subset of pancreatic ducts, whereas TMPRSS2 protein was restricted to ductal cells. These findings reduce the likelihood that SARS-CoV-2 directly infects ß cells in vivo through ACE2 and TMPRSS2.


Subject(s)
Angiotensin-Converting Enzyme 2/metabolism , COVID-19/metabolism , Diabetes Mellitus/metabolism , SARS-CoV-2/physiology , Serine Endopeptidases/metabolism , Virus Internalization , Angiotensin-Converting Enzyme 2/analysis , Angiotensin-Converting Enzyme 2/genetics , Animals , COVID-19/complications , COVID-19/genetics , Cells, Cultured , Diabetes Complications/genetics , Diabetes Complications/metabolism , Diabetes Mellitus/genetics , Gene Expression , Humans , Insulin-Secreting Cells/metabolism , Mice , Microvessels/metabolism , Pancreas/metabolism , RNA, Messenger/analysis , RNA, Messenger/genetics , Serine Endopeptidases/analysis , Serine Endopeptidases/genetics
8.
bioRxiv ; 2020 Oct 20.
Article in English | MEDLINE | ID: mdl-33106804

ABSTRACT

Reports of new-onset diabetes and diabetic ketoacidosis in individuals with COVID-19 have led to the hypothesis that SARS-CoV-2, the virus that causes COVID-19, is directly cytotoxic to pancreatic islet ß cells. This would require binding and entry of SARS-CoV-2 into host ß cells via cell surface co-expression of ACE2 and TMPRSS2, the putative receptor and effector protease, respectively. To define ACE2 and TMPRSS2 expression in the human pancreas, we examined six transcriptional datasets from primary human islet cells and assessed protein expression by immunofluorescence in pancreata from donors with and without diabetes. ACE2 and TMPRSS2 transcripts were low or undetectable in pancreatic islet endocrine cells as determined by bulk or single cell RNA sequencing, and neither protein was detected in α or ß cells from these donors. Instead, ACE2 protein was expressed in the islet and exocrine tissue microvasculature and also found in a subset of pancreatic ducts, whereas TMPRSS2 protein was restricted to ductal cells. The absence of significant ACE2 and TMPRSS2 co-expression in islet endocrine cells reduces the likelihood that SARS-CoV-2 directly infects pancreatic islet ß cells through these cell entry proteins.

9.
Sci Adv ; 5(12): eaax0292, 2019 12.
Article in English | MEDLINE | ID: mdl-31840061

ABSTRACT

The mechanistic basis for the biogenesis of peptide hormones and growth factors is poorly understood. Here, we show that the conserved endoplasmic reticulum membrane translocon-associated protein α (TRAPα), also known as signal sequence receptor 1, plays a critical role in the biosynthesis of insulin. Genetic analysis in the nematode Caenorhabditis elegans and biochemical studies in pancreatic ß cells reveal that TRAPα deletion impairs preproinsulin translocation while unexpectedly disrupting distal steps in insulin biogenesis including proinsulin processing and secretion. The association of common intronic single-nucleotide variants in the human TRAPα gene with susceptibility to type 2 diabetes and pancreatic ß cell dysfunction suggests that impairment of preproinsulin translocation and proinsulin trafficking may contribute to the pathogenesis of type 2 diabetes.


Subject(s)
Caenorhabditis elegans Proteins/metabolism , Caenorhabditis elegans/metabolism , Calcium-Binding Proteins/metabolism , Insulin/biosynthesis , Membrane Glycoproteins/metabolism , Receptors, Cytoplasmic and Nuclear/metabolism , Receptors, Peptide/metabolism , Animals , Endoplasmic Reticulum Stress , Insulin/metabolism , Insulin Secretion , Protein Precursors/metabolism , Recombinant Fusion Proteins/metabolism
10.
Cell Rep ; 27(6): 1755-1768.e4, 2019 05 07.
Article in English | MEDLINE | ID: mdl-31067461

ABSTRACT

Preterm birth (PTB) is a syndrome with many origins. Among them, infection or inflammation are major risk factors for PTB; however, local defense mechanisms to mount anti-inflammatory responses against inflammation-induced PTB are poorly understood. Here, we show that endothelial TLR4 in the decidual bed is critical for sensing inflammation during pregnancy because mice with endothelial Tlr4 deletion are resistant to lipopolysaccharide (LPS)-induced PTB. Under inflammatory conditions, IL-6 is readily expressed in decidual endothelial cells with signal transducer and activator of transcription 3 (Stat3) phosphorylation in perivascular stromal cells, which then regulates expression of anti-inflammatory IL-10. Our observation that administration of an IL-10 neutralizing antibody predisposing mice to PTB shows IL-10's anti-inflammatory role to prevent PTB. We show that the integration of endothelial and perivascular stromal signaling can determine pregnancy outcomes. These findings highlight a role for endothelial TLR4 in inflammation-induced PTB and may offer a potential therapeutic target to prevent PTB.


Subject(s)
Decidua/pathology , Endothelial Cells/metabolism , Molecular Targeted Therapy , Premature Birth/pathology , Premature Birth/prevention & control , Animals , Cell Communication/drug effects , Cells, Cultured , Endothelial Cells/drug effects , Endothelial Cells/pathology , Female , Gene Deletion , Inflammation/pathology , Interleukin-10/metabolism , Interleukin-6/pharmacology , Lipopolysaccharide Receptors/metabolism , Lipopolysaccharides , Mice , NF-kappa B/metabolism , Ovary/metabolism , Pregnancy , STAT3 Transcription Factor/metabolism , Stromal Cells/drug effects , Stromal Cells/metabolism , Stromal Cells/pathology , Toll-Like Receptor 4/metabolism
11.
Nat Commun ; 9(1): 603, 2018 02 09.
Article in English | MEDLINE | ID: mdl-29426931

ABSTRACT

Embryo implantation is central to pregnancy success. Our previous understanding is limited by studying this phenomenon primarily in two dimensions. Here we employ 3D visualization, revealing that epithelial evaginations that form implantation chambers (crypts) consistently arise with preexisting glands, suggesting direct access of glands to embryos within the chamber. While the lobular domains of the glands become more developed, the ductal regions continue to elongate and progressively stretch following implantation. Using diapausing mice and mice with deletion of the planar cell polarity gene Vangl2 in uterine epithelial cells, we show that dynamic changes in gland topography depend on implantation-competent blastocysts and planar cell polarity. By transferring blastocyst-size beads preloaded with HB-EGF in pseudopregnant mice, we found that HB-EGF is a trigger for the communication between embryos and glands. Glands directly connecting the crypt encasing the embryo during implantation are therefore fundamental to pregnancy success.


Subject(s)
Blastocyst/physiology , Cell Communication/physiology , Cell Polarity/physiology , Embryo Implantation/physiology , Animals , Blastocyst/cytology , Blastocyst/drug effects , Cell Communication/drug effects , Cell Communication/genetics , Cell Polarity/genetics , Embryo Implantation/genetics , Female , Gene Expression Regulation, Developmental , Heparin-binding EGF-like Growth Factor/genetics , Heparin-binding EGF-like Growth Factor/metabolism , Heparin-binding EGF-like Growth Factor/pharmacology , Imaging, Three-Dimensional/methods , Male , Mice, 129 Strain , Mice, Inbred C57BL , Mice, Knockout , Mice, Transgenic , Microscopy, Confocal , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism , Pregnancy , Uterus/cytology , Uterus/metabolism , Uterus/physiology
12.
Article in English | MEDLINE | ID: mdl-30666294

ABSTRACT

Pheochromocytomas have been shown to impair glucose tolerance and, rarely, to precipitate overt diabetes mellitus. We report here a case of a large pheochromocytoma in a woman with a recent diagnosis of diabetes mellitus that proved difficult to control despite high-dose insulin therapy who had complete resolution of her hyperglycemia following adrenalectomy. Her dramatic presentation demonstrates the need to consider this etiology in patients with new-onset insulin resistance and hypertension.

13.
Cell Cycle ; 16(21): 2023-2031, 2017.
Article in English | MEDLINE | ID: mdl-28873006

ABSTRACT

Senescence contributes to the local and systemic aging of tissues and has been associated with age-related diseases. Recently, roles for this process during pregnancy have come to light, the dysregulation of which has been associated with adverse pregnancy outcomes such as preterm birth. Here, we summarize recent advances that support a role for senescence in birth timing and propose new aspects of study in this emerging field.


Subject(s)
Aging , Cellular Senescence/physiology , Parturition/physiology , Premature Birth/pathology , Animals , Apoptosis/physiology , Female , Humans , Infant, Newborn , Male , Pregnancy , Premature Birth/physiopathology , Time Factors
14.
Am J Obstet Gynecol ; 217(5): 592.e1-592.e17, 2017 11.
Article in English | MEDLINE | ID: mdl-28847437

ABSTRACT

BACKGROUND: Decidual senescence has been considered a mechanism of disease for spontaneous preterm labor in the absence of severe acute inflammation. Yet, signs of cellular senescence have also been observed in the chorioamniotic membranes from women who underwent the physiological process of labor at term. OBJECTIVE: We aimed to investigate whether, in the absence of acute histologic chorioamnionitis, the chorioamniotic membranes from women who underwent spontaneous preterm labor or labor at term exhibit signs of cellular senescence. STUDY DESIGN: Chorioamniotic membrane samples were collected from women who underwent spontaneous preterm labor or labor at term. Gestational age-matched nonlabor controls were also included. Senescence-associated genes/proteins were determined using reverse transcription quantitative polymerase chain reaction analysis (n = 7-9 each for array; n = 26-28 each for validation), enzyme-linked immunosorbent assays (n = 7-9 each), immunoblotting (n = 6-7 each), and immunohistochemistry (n = 7-8 each). Senescence-associated ß-galactosidase activity (n = 7-11 each) and telomere length (n = 15-22 each) were also evaluated. RESULTS: In the chorioamniotic membranes without acute histologic chorioamnionitis: (1) the expression profile of senescence-associated genes was different between the labor groups (term in labor and preterm in labor) and the nonlabor groups (term no labor and preterm no labor), yet there were differences between the term in labor and preterm in labor groups; (2) most of the differentially expressed genes among the groups were closely related to the tumor suppressor protein (TP53) pathway; (3) the expression of TP53 was down-regulated in the term in labor and preterm in labor groups compared to their nonlabor counterparts; (4) the expression of CDKN1A (gene coding for p21) was up-regulated in the term in labor and preterm in labor groups compared to their nonlabor counterparts; (5) the expression of the cyclin kinase CDK2 and cyclins CCNA2, CCNB1, and CCNE1 was down-regulated in the preterm in labor group compared to the preterm no labor group; (6) the concentration of TP53 was lower in the preterm in labor group than in the preterm no labor and term in labor groups; (7) the senescence-associated ß-galactosidase activity was greater in the preterm in labor group than in the preterm no labor and term in labor groups; (8) the concentration of phospho-S6 ribosomal protein was reduced in the term in labor group compared to its nonlabor counterpart, but no differences were observed between the preterm in labor and preterm no labor groups; and (9) no significant differences were observed in relative telomere length among the study groups (term no labor, term in labor, preterm no labor, and preterm in labor). CONCLUSION: In the absence of acute histologic chorioamnionitis, signs of cellular senescence are present in the chorioamniotic membranes from women who underwent spontaneous preterm labor compared to those who delivered preterm in the absence of labor. However, the chorioamniotic membranes from women who underwent spontaneous labor at term did not show consistent signs of cellular senescence in the absence of histologic chorioamnionitis. These results suggest that different pathways are implicated in the pathological and physiological processes of labor.


Subject(s)
Amnion/cytology , Cellular Senescence/genetics , Chorion/cytology , Labor, Obstetric/genetics , Obstetric Labor, Premature/genetics , Adult , Amnion/metabolism , Chorioamnionitis/pathology , Chorion/metabolism , Cyclin A2/genetics , Cyclin B1/genetics , Cyclin E/genetics , Cyclin-Dependent Kinase 2/genetics , Cyclin-Dependent Kinase Inhibitor p21/genetics , Down-Regulation , Enzyme-Linked Immunosorbent Assay , Female , Gestational Age , Humans , Immunohistochemistry , Labor, Obstetric/metabolism , Obstetric Labor, Premature/metabolism , Oncogene Proteins/genetics , Phosphoproteins/metabolism , Pregnancy , Reverse Transcriptase Polymerase Chain Reaction , Ribosomal Protein S6/metabolism , Transcriptome , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism , Up-Regulation , Young Adult , beta-Galactosidase/metabolism
16.
Proc Natl Acad Sci U S A ; 113(50): E8079-E8088, 2016 12 13.
Article in English | MEDLINE | ID: mdl-27911818

ABSTRACT

Blastocyst implantation is a complex process requiring coordination of a dynamic sequence of embryo-uterine interactions. Blood vessels enter the uterus from the mesometrium, demarcating the uterus into mesometrial (M) and antimesometrial (AM) domains. Implantation occurs along the uterine longitudinal axis within specialized implantation chambers (crypts) that originate within the evaginations directed from the primary lumen toward the AM domain. The morphological orientation of crypts in rodent uteri was recognized more than a century ago, but the mechanism remained unknown. Here we provide evidence that planar cell polarity (PCP) signaling orchestrates directed epithelial evaginations to form crypts for implantation in mice. Uterine deletion of Vang-like protein 2, but not Vang-like protein 1, conferred aberrant PCP signaling, misdirected epithelial evaginations, defective crypt formation, and blastocyst attachment, leading to severely compromised pregnancy outcomes. The study reveals a previously unrecognized role for PCP in executing spatial cues for crypt formation and implantation. Because PCP is an evolutionarily conserved phenomenon, our study is likely to inspire implantation studies of this signaling pathway in humans and other species.


Subject(s)
Cell Polarity/physiology , Embryo Implantation/physiology , Uterus/physiology , Animals , Bone Morphogenetic Protein 2/genetics , Bone Morphogenetic Protein 2/physiology , Carrier Proteins/genetics , Carrier Proteins/physiology , Cell Communication/physiology , Dishevelled Proteins/physiology , Epithelium/anatomy & histology , Epithelium/physiology , Female , Male , Mice , Mice, Knockout , Nerve Tissue Proteins/deficiency , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/physiology , Pregnancy , Pregnancy Outcome , Receptor Tyrosine Kinase-like Orphan Receptors/deficiency , Receptor Tyrosine Kinase-like Orphan Receptors/genetics , Receptor Tyrosine Kinase-like Orphan Receptors/physiology , Signal Transduction/physiology , Uterus/anatomy & histology , Wnt-5a Protein/deficiency , Wnt-5a Protein/genetics , Wnt-5a Protein/physiology
17.
Sci Rep ; 6: 33023, 2016 09 13.
Article in English | MEDLINE | ID: mdl-27620843

ABSTRACT

Here we demonstrate that conditional deletion of mouse uterine Trp53 (p53(d/d)), molecularly linked to mTORC1 activation and causally linked to premature uterine senescence and preterm birth, results in aberrant lipid signatures within the heterogeneous cell types of embryo implantation sites on day 8 of pregnancy. In situ nanospray desorption electrospray ionization mass spectrometry imaging (nano-DESI MSI) was used to characterize the molecular speciation of free fatty acids, monoacylglycerol species, unmodified and oxidized phosphatidylcholine (PC/Ox-PC), and diacylglycerol (DG) species within implantation sites of p53(d/d) mice and floxed littermates. Implantation sites from p53(d/d) mice exhibited distinct spatially resolved changes demonstrating accumulation of DG species, depletion of Ox-PC species, and increase in species with more unsaturated acyl chains, including arachidonic and docosahexaenoic acid. Understanding abnormal changes in the abundance and localization of individual lipid species early in the progression to premature birth is an important step toward discovering novel targets for treatments and diagnosis.


Subject(s)
Embryo Implantation/genetics , Embryo Implantation/physiology , Genes, p53 , Lipid Metabolism/genetics , Uterus/metabolism , Animals , Diglycerides/metabolism , Female , Mechanistic Target of Rapamycin Complex 1/metabolism , Mice , Mice, Knockout , Oxidation-Reduction , Phosphatidylcholines/metabolism , Pregnancy , Spectrometry, Mass, Electrospray Ionization
18.
J Clin Invest ; 126(8): 2941-54, 2016 08 01.
Article in English | MEDLINE | ID: mdl-27454290

ABSTRACT

Inflammation and oxidative stress are known risk factors for preterm birth (PTB); however, the mechanisms and pathways that influence this condition are not fully described. Previously, we showed that mTORC1 signaling is increased in mice harboring a uterine-specific deletion of transformation-related protein 53 (p53d/d mice), which exhibit premature decidual senescence that triggers spontaneous and inflammation-induced PTB. Treatment with the mTORC1 inhibitor rapamycin reduced the incidence of PTB in the p53d/d mice. Decidual senescence with heightened mTORC1 signaling is also a signature of human PTB. Here, we have identified an underlying mechanism for PTB and a potential therapeutic strategy for treating the condition. Treatment of pregnant p53d/d mice with either the antidiabetic drug metformin or the antioxidant resveratrol activated AMPK signaling and inhibited mTORC1 signaling in decidual cells. Both metformin and resveratrol protected against spontaneous and inflammation-induced PTB in p53d/d females. Using multiple approaches, we determined that p53 interacts with sestrins to coordinate an inverse relationship between AMPK and mTORC1 signaling that determines parturition timing. This signature was also observed in human decidual cells. Together, these results reveal that p53-dependent coordination of AMPK and mTORC1 signaling controls parturition timing and suggest that metformin and resveratrol have therapeutic potential to prevent PTB.


Subject(s)
AMP-Activated Protein Kinases/physiology , Decidua/physiology , Multiprotein Complexes/physiology , Nuclear Proteins/physiology , Parturition/physiology , TOR Serine-Threonine Kinases/physiology , Tumor Suppressor Protein p53/physiology , Animals , Antioxidants/metabolism , Binding Sites , Cellular Senescence , Female , Humans , Inflammation , Mechanistic Target of Rapamycin Complex 1 , Mice , Mice, Transgenic , Oxidative Stress , Peroxidases , Pregnancy , Premature Birth , Signal Transduction , Up-Regulation , Uterus/physiology
19.
JCI Insight ; 1(3)2016 Mar 17.
Article in English | MEDLINE | ID: mdl-27159542

ABSTRACT

Preeclampsia (PE) is a disorder of pregnancy that manifests as late gestational maternal hypertension and proteinuria and can be life-threatening to both the mother and baby. It is believed that abnormal placentation is responsible for the cascade of events leading to the maternal syndrome. Embryo implantation is critical to establishing a healthy pregnancy. Defective implantation can cause adverse "ripple effects," leading to abnormal decidualization and placentation, retarded fetal development, and poor pregnancy outcomes, such as PE and fetal growth restriction. The precise mechanism(s) of implantation defects that lead to PE remain elusive. BPH/5 mice, which spontaneously develop the cardinal features of PE, show peri-implantation defects including upregulation of Cox2 and IL-15 at the maternal-fetal interface. This was associated with decreased decidual natural killer (dNK) cells, which have important roles in establishing placental perfusion. Interestingly, a single administration of a Cox2 inhibitor (celecoxib) during decidualization restrained Cox2 and IL-15 expression, restored dNK cell numbers, improved fetal growth, and attenuated late gestational hypertension in BPH/5 female mice. This study provides evidence that decidual overexpression of Cox2 and IL-15 may trigger the adverse pregnancy outcomes reflected in the preeclamptic syndrome, underscoring the idea that Cox2 inhibitor treatment is an effective strategy for the prevention of PE-associated fetal and maternal morbidity and mortality.

20.
Analyst ; 141(5): 1649-59, 2016 Mar 07.
Article in English | MEDLINE | ID: mdl-26734689

ABSTRACT

Understanding how biological molecules are generated, metabolized and eliminated in living systems is important for interpreting processes such as immune response and disease pathology. While genomic and proteomic studies have provided vast amounts of information over the last several decades, interest in lipidomics has also grown due to improved analytical technologies revealing altered lipid metabolism in type 2 diabetes, cancer, and lipid storage disease. Mass spectrometry (MS) measurements are currently the dominant approach for characterizing the lipidome by providing detailed information on the spatial and temporal composition of lipids. However, interpreting lipids' biological roles is challenging due to the existence of numerous structural and stereoisomers (i.e. distinct acyl chain and double-bond positions), which are often unresolvable using present approaches. Here we show that combining liquid chromatography (LC) and structurally-based ion mobility spectrometry (IMS) measurement with MS analyses distinguishes lipid isomers and allows insight into biological and disease processes.


Subject(s)
Chromatography, Liquid/methods , Lipids/chemistry , Mass Spectrometry/methods , Metabolomics/methods , Fatty Acids/chemistry , Fatty Acids/metabolism , Lipids/isolation & purification , Stereoisomerism
SELECTION OF CITATIONS
SEARCH DETAIL
...