Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
ACS Appl Mater Interfaces ; 12(52): 58113-58121, 2020 Dec 30.
Article in English | MEDLINE | ID: mdl-33325677

ABSTRACT

Nanoscale engineering of carbon materials is immensely demanded in various scientific areas. We present highly ordered nitrogen-doped carbon nanowire arrays via block copolymer (BCP) self-assembly under an electric field. Large dielectric constant difference between distinct polymer blocks offers rapid alignment of PMMA-b-PAN self-assembled nanodomains under an electric field. Lithographic patterning of the graphene electrode as well as straightforward thermal carbonization of the PAN block creates well-aligned carbon nanowire device structures. Diverse carbon nanopatterns including radial and curved arrays can be readily assembled by the modification of electrode shapes. Our carbon nanopatterns bear a nitrogen content over 26%, highly desirable for NO2 sensing, as the nitrogen element acts as adsorption sites for NO2 molecules. Aligned carbon nanowire arrays exhibits a 6-fold enhancement of NO2 sensitivity from a randomly aligned counterpart. Taking advantage of well-established benefits from device-oriented BCP nanopatterning, our approach proposes a viable route to highly ordered carbon nanostructures compatible to next-generation device architectures.

2.
ACS Nano ; 13(11): 13092-13099, 2019 Nov 26.
Article in English | MEDLINE | ID: mdl-31600440

ABSTRACT

Block copolymer (BCP) lithography is an effective nanopatterning methodology exploiting nanoscale self-assembled periodic patterns in BCP thin films. This approach has a critical limitation for nonplanar substrate geometry arising from the reflow and modification of BCP films upon the thermal or solvent annealing process, which is inevitable to induce the mobility of BCP chains for the self-assembly process. Herein, reflow-free, 3D BCP nanopatterning is demonstrated by introducing a conformally grown adlayer by the initiated chemical vapor deposition (iCVD) process. A highly cross-linked poly(divinylbenzene) layer was deposited directly onto the BCP thin film surface by iCVD, which effectively prevented the reflow of BCP thin film during an annealing process. BCP nanopatterns could be stabilized on various substrate geometry, including a nonplanar deformed polymer substrate, a pyramid shape substrate, and a graphene fiber surface. A fiber-type hydrogen evolution reaction (HER) catalyst is suggested by stabilizing lamellar Pt nanopatterns on severely rough graphene fiber surfaces.

3.
ACS Appl Mater Interfaces ; 11(22): 20265-20271, 2019 Jun 05.
Article in English | MEDLINE | ID: mdl-31081329

ABSTRACT

A nanosquare array is an indispensable element for the integrated circuit design of electronic devices. Block copolymer (BCP) lithography, a promising bottom-up approach for sub-10 nm patterning, has revealed a generic difficulty in the production of square symmetry because of the thermodynamically favored hexagonal packing of self-assembled sphere or cylinder arrays in thin-film geometry. Here, we demonstrate a simple route to square arrays via the orthogonal self-assembly of two lamellar layers on topographically patterned substrates. While bottom lamellar layers within a topographic trench are aligned parallel to the sidewalls, top layers above the trench are perpendicularly oriented to relieve the interfacial energy between grain boundaries. The size and period of the square symmetry are readily controllable with the molecular weight of BCPs. Moreover, such an orthogonal self-assembly can be applied to the formation of complex nanopatterns for advanced applications, including metal nanodot square arrays.

4.
Nat Nanotechnol ; 14(3): 245-251, 2019 03.
Article in English | MEDLINE | ID: mdl-30778213

ABSTRACT

Highly active metal nanoparticles are desired to serve in high-temperature electrocatalysis, for example, in solid oxide electrochemical cells. Unfortunately, the low thermal stability of nanosized particles and the sophisticated interface requirement for electrode structures to support concurrent ionic and electronic transport make it hard to identify the exact catalytic role of nanoparticles embedded within complex electrode architectures. Here we present an accurate analysis of the reactivity of oxide electrodes boosted by metal nanoparticles, where all particles participate in the reaction. Monodisperse particles (Pt, Pd, Au and Co), 10 nm in size and stable at high temperature (more than 600 °C), are uniformly distributed onto mixed-conducting oxide electrodes as a model electrochemical cell via self-assembled nanopatterning. We identify how the metal catalysts activate hydrogen electrooxidation on the ceria-based electrode surface and quantify how rapidly the reaction rate increases with proper choice of metal. These results suggest an ideal electrode design for high-temperature electrochemical applications.

5.
ACS Appl Mater Interfaces ; 10(51): 44660-44667, 2018 Dec 26.
Article in English | MEDLINE | ID: mdl-30480431

ABSTRACT

Effective surface enhancement of Raman scattering (SERS) requires strong near-field enhancement as well as effective light collection of plasmonic structures. To this end, plasmonic nanoparticle (NP) arrays with narrow gaps or sharp tips have been suggested as desirable structures. We present a highly dense and uniform Au nanoscale gap array enabled by the customized design of NP shape and arrangement employing block copolymer self-assembly. Block copolymer self-assembly in thin films offers uniform hexagonally packed nanopost template arrays over the entire surface of a 2 in. wafer. Conventional evaporative metal deposition over the nanotemplate surface allows precise geometric control and positional arrangement of metal NPs, constituting tunable, strong plasmonic near-field enhancement particularly at the "hot spots" near interparticular nanoscale gaps. Underlying field distribution has been investigated by a finite-difference time-domain simulation. In the detection of thiophenol, our Au nanogap array shows a remarkable enhancement of Raman intensity greater than ∼104, a standard deviation as small as 12.3% compared to that of the planar Au thin film. In addition, adenine biomolecules can be detected with a detection limit as low as 100 nM. Our approach proposes highly sensitive and reliable SERS on the basis of a scalable, low-cost bottom-up strategy.

6.
Nanoscale ; 10(1): 100-108, 2017 Dec 21.
Article in English | MEDLINE | ID: mdl-29210423

ABSTRACT

Transparent conducting electrodes (TCEs) are essential components in various optoelectronic devices. Nanostructured metallic thin film is one of the promising candidates to complement current metal oxide films, such as ITO, where high cost rare earth elements have been a longstanding issue. Herein, we present that multiscale porous metal nanomesh thin films prepared by bimodal self-assembly of block copolymer (BCP)/homopolymer blends may offer a new opportunity for TCE. This hierarchical concurrent self-assembly consists of macrophase separation between BCP and homopolymer as well as microphase separation of BCP, and thus provides a straightforward spontaneous production of a highly porous multiscale pattern over an arbitrary large area. Employing a conventional pattern transfer process, we successfully demonstrated a multiscale highly porous metallic thin film with reasonable optical transparency, electro-conductance, and large-area uniformity, taking advantage of low loss light penetration through microscale pores and significant suppression of light reflection at the nanoporous structures. This well-defined controllable bimodal self-assembly can offer valuable opportunities for many different applications, including optoelectronics, energy harvesting, and membranes.

7.
Adv Mater ; 29(32)2017 Aug.
Article in English | MEDLINE | ID: mdl-28635174

ABSTRACT

One of the fundamental challenges encountered in successful incorporation of directed self-assembly in sub-10 nm scale practical nanolithography is the process compatibility of block copolymers with a high Flory-Huggins interaction parameter (χ). Herein, reliable, fab-compatible, and ultrafast directed self-assembly of high-χ block copolymers is achieved with intense flash light. The instantaneous heating/quenching process over an extremely high temperature (over 600 °C) by flash light irradiation enables large grain growth of sub-10 nm scale self-assembled nanopatterns without thermal degradation or dewetting in a millisecond time scale. A rapid self-assembly mechanism for a highly ordered morphology is identified based on the kinetics and thermodynamics of the block copolymers with strong segregation. Furthermore, this novel self-assembly mechanism is combined with graphoepitaxy to demonstrate the feasibility of ultrafast directed self-assembly of sub-10 nm nanopatterns over a large area. A chemically modified graphene film is used as a flexible and conformal light-absorbing layer. Subsequently, transparent and mechanically flexible nanolithography with a millisecond photothermal process is achieved leading the way for roll-to-roll processability.

8.
ACS Appl Mater Interfaces ; 9(18): 15727-15732, 2017 May 10.
Article in English | MEDLINE | ID: mdl-28401753

ABSTRACT

We introduce a facile and effective fabrication of complex multimetallic nanostructures through block copolymer self-assembly. Two- and three-dimensional complex nanostructures, such as "nanomesh," "double-layered nanomeshes," and "surface parallel cylinders on nanomesh," can be fabricated using the self-assembly of perforated lamellar morphology in block copolymer thin films. Simultaneous integration of various metallic elements, including Pt, Au, and Co, into the self-assembled morphologies generates multimetal complex nanostructures with highly interconnected morphology and a large surface. The resultant metal nanostructures with a large surface area, robust electrical connectivity, and well-defined alloy composition demonstrate a high-performance electrochemical catalysis for hydrogen evolution reaction (current density: 6.27 mA/cm2@0.1 V and Tafel slope: 43 mV/dec).

9.
Small ; 13(17)2017 05.
Article in English | MEDLINE | ID: mdl-28218488

ABSTRACT

Spatial arrangement of 1D nanomaterials may offer enormous opportunities for advanced electronics and photonics. Moreover, morphological complexity and chemical diversity in the nanoscale components may lead to unique properties that are hardly anticipated in randomly distributed homogeneous nanostructures. Here, controlled chemical segmentation of metal nanowire arrays using block copolymer lithography and subsequent reversible metal ion loading are demonstrated. To impose chemical heterogeneity in the nanowires generated by block copolymer lithography, reversible ion loading method highly specific for one particular polymer block is introduced. Reversibility of the metal ion loading enables area-selective localized replacement of metal ions in the self-assembled patterns and creates segmented metal nanowire arrays with different metallic components. Further integration of this method with shear aligning process produces high aligned segmented metal nanowire array with desired local chemical compositions.

10.
ACS Nano ; 10(3): 3435-42, 2016 Mar 22.
Article in English | MEDLINE | ID: mdl-26871736

ABSTRACT

Recent advance of high-power laser processing allows for rapid, continuous, area-selective material fabrication, typically represented by laser crystallization of silicon or oxides for display applications. Two-dimensional materials such as graphene exhibit remarkable physical properties and are under intensive development for the manufacture of flexible devices. Here we demonstrate an area-selective ultrafast nanofabrication method using low intensity infrared or visible laser irradiation to direct the self-assembly of block copolymer films into highly ordered manufacturing-relevant architectures at the scale below 12 nm. The fundamental principles underlying this light-induced nanofabrication mechanism include the self-assembly of block copolymers to proceed across the disorder-order transition under large thermal gradients, and the use of chemically modified graphene films as a flexible and conformal light-absorbing layers for transparent, nonplanar, and mechanically flexible surfaces.

11.
ACS Nano ; 9(5): 5536-43, 2015 May 26.
Article in English | MEDLINE | ID: mdl-25893844

ABSTRACT

Localized surface plasmon resonance of metallic nanostructures receives noticeable attention in photonics, electronics, catalysis, and so on. Core-shell nanostructures are particularly attractive due to the versatile tunability of plasmonic properties along with the independent control of core size, shell thickness, and corresponding chemical composition, but they commonly suffer from difficult synthetic procedures. We present a reliable and controllable route to a highly ordered uniform Au@Ag core-shell nanoparticle array via block copolymer lithography and subsequent seeded-shell growth. Size-tunable monodisperse Au nanodot arrays are generated by block copolymer self-assembly and are used as seed layers to grow Ag shells with variable thickness. The resultant Au@Ag core-shell nanoparticle arrays exhibit widely tunable broadband enhancement of plasmonic resonance, greatly surpassing single-element nanoparticle or homogeneous alloy nanoparticle arrays. Surface-enhanced Raman scattering of the core-shell nanoparticle arrays showed an enhancement factor greater than 270 from Au nanoparticle arrays.

12.
Psychiatry Investig ; 11(4): 454-8, 2014 Oct.
Article in English | MEDLINE | ID: mdl-25395977

ABSTRACT

OBJECTIVE: Repeated treatment with psychostimulants induces sensitization of the dopaminergic system in the brain. Dopaminergic sensitization has been proposed as a mechanism of psychosis. Although antipsychotics block the expression of sensitized behavior, they are ineffective for reversing the sensitized state. We investigated the effect of clozapine, haloperidol, and fluoxetine on the reversal of cocaine-induced behavioral sensitization. METHODS: Male ICR mice were sensitized to cocaine with repeated treatment. Animals were then split into four groups, and each group was treated with vehicle or one of the above drugs for 5 days. After a 3-day drug washout, locomotor activity was assessed before and after a cocaine challenge. RESULTS: Clozapine reversed the sensitized state, whereas haloperidol did not. Fluoxetine seemed to reverse the sensitization partially. CONCLUSION: We confirmed that D2 blockade was not effective for reversing sensitization. The reversal by clozapine is partially explained in terms of its strong 5-HT2 and weak D2 affinity. The partial reversal by fluoxetine seemed to be related to its serotonin-augmenting action.

13.
Small ; 10(18): 3742-9, 2014 Sep 24.
Article in English | MEDLINE | ID: mdl-24821268

ABSTRACT

Ordered metal nanopatterns are crucial requirements for electronics, magnetics, catalysts, photonics, and so on. Despite considerable progress in the synthetic route to metal nanostructures, highly ordered metal nanopatterning over a large-area is still challenging. Nanodomain swelling block copolymer lithography is presented as a general route to the systematic morphology tuning of metal nanopatterns from amphiphilic diblock copolymer self-assembly. Selective swelling of hydrophilic nanocylinder domains in amphiphilic block copolymer films during metal precursor loading and subsequent oxygen based etching generates diverse shapes of metal nanopatterns, including hexagonal nanoring array and hexagonal nanomesh and double line array in addition to common nanodot and nanowire arrays. Solvent annealing condition of block copolymer templates, selective swelling of hydrophilic cylinder nanodomains, block copolymer template thickness, and oxygen based etching methods are the decisive parameters for systematic morphology evolution. The plasmonic properties of ordered Au nanopatterns are characterized and analyzed with finite differential time domain calculation. This approach offers unprecedented opportunity for diverse metal nanopatterns from commonly used diblock copolymer self-assembly.

14.
Nano Lett ; 13(11): 5720-6, 2013.
Article in English | MEDLINE | ID: mdl-24083558

ABSTRACT

Nanoscale alloys attract enormous research attentions in catalysis, magnetics, plasmonics and so on. Along with multicomponent synergy, quantum confinement and extreme large surface area of nanoalloys offer novel material properties, precisely and broadly tunable with chemical composition and nanoscale dimension. Despite substantial progress of nanoalloy synthesis, the randomized positional arrangement and dimensional/compositional inhomogeneity of nanoalloys remain significant technological challenges for advanced applications. Here we present a generalized route to synthesize single-crystalline intermetallic nanoalloy arrays with dimensional and compositional uniformity via self-assembly. Specific electrostatic association of multiple ionic metal complexes within self-assembled nanodomains of block copolymers generated patterned monodisperse bimetallic/trimetallic nanoalloy arrays consisting of various elements, including Au, Co, Fe, Pd, and Pt. The precise controllability of size, composition, and intermetallic crystalline structure of nanoalloys facilitated tailored synergistic properties, such as accelerated catalytic growth of vertical carbon nanotubes from Fe-Co nanoalloy arrays.

SELECTION OF CITATIONS
SEARCH DETAIL
...