Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
Inorg Chem ; 61(32): 12643-12651, 2022 Aug 15.
Article in English | MEDLINE | ID: mdl-35921136

ABSTRACT

The temperature-dependent reaction properties of actinide elements are of particular interest in the safety assessment of high-level radioactive waste (HLRW) disposal systems. In this study, the hydrolysis of Pu(III) and the solubility of Pu(OH)3(am) were investigated at various temperatures (10-40 °C) in 0.1 M NaClO4. A strong reducing condition for maintaining the oxidation state of Pu(III) while slowly increasing the pH of the solution was realized by electrolysis. The formation constants of the first hydrolysis species, log *ß1', and the solubility products of Pu(OH)3(am), log *Ks,0', at 10, 17, and 40 °C were experimentally determined using spectrophotometry, laser-induced breakdown detection, and radiometry. The enthalpy and entropy changes for these reactions were estimated using the van't Hoff equation. The first hydrolysis of Pu(III) is endothermic (ΔrHm° = 34.10 ± 4.48 kJ mol-1), and the dissolution of Pu(OH)3(am) is exothermic (ΔrHm° = -294.29 ± 23.05 kJ mol-1) with negative entropy changes. These thermodynamic data will contribute to improving the reliability of the safety assessment of HLRW disposal facilities and understanding the geochemical behavior of Pu under reducing or anoxic aqueous conditions at elevated temperatures.

2.
RSC Adv ; 12(7): 4047-4053, 2022 Jan 28.
Article in English | MEDLINE | ID: mdl-35425458

ABSTRACT

Complexation of actinides and lanthanides with carboxylic organic ligands is a critical issue affecting radionuclide migration from deep geological disposal systems of spent nuclear fuel. A series of Eu(iii)-aliphatic dicarboxylate compounds, as chemical analogs of radioactive Am(iii) species, Eu2(Ox)3(H2O)6, Eu2(Mal)3(H2O)6, and Eu2(Suc)3(H2O)2, were synthesized and characterized using X-ray crystallography and time-resolved laser fluorescence spectroscopy to examine the ligand-dependent binding modes and the corresponding changes in spectroscopic properties. Powder X-ray crystallography results confirmed that all of the compounds presented a crystalline polymer structure with a trigonal prism square-face tricapped polyhedron geometry centered on Eu(iii) in a nine-coordinate environment involving nine oxygen atoms. This study captures the transition of the coordination modes of aliphatic dicarboxylate ligands from side-on to end-on binding as the carbon chain length increases. This transition is illustrated in malonate bindings involving a combination of side-on and end-on modes. Strongly enhanced luminescence, especially for the hypersensitive peak, indicates a low site symmetry in the formation of solid compounds. The number of remaining bound water molecules was estimated from the resultant increased luminescence lifetimes, which were in good agreement with crystal structures. The excitation-emission matrix spectra of these crystalline polymers suggest that Ox ligands promote the sensitized luminescence of Eu(iii), especially in the UV region. In the case of Mal and Suc ligands, charge transfer occurs in the opposite direction from Eu(iii) to the ligands under UV excitation, resulting in weaker luminescence.

3.
Inorg Chem ; 59(19): 13912-13922, 2020 Oct 05.
Article in English | MEDLINE | ID: mdl-32946238

ABSTRACT

The thermodynamics of Am(III) complex formation in natural groundwater systems is one of the major topics of research in the field of high-level radioactive waste management. In this study, we investigate the absorption and luminescence properties of aqueous Am(III) complexes with a series of aliphatic dicarboxylates in order to learn the thermodynamic complexation behaviors in relation to binding geometries. The formation of Am(III) complexes with these carboxylate ligands induced distinct red shifts in the absorption spectra, which enabled chemical speciation. The formation constants determined by deconvolution of the absorption spectra showed a linear decrease for the three ligands (oxalate (Ox), malonate (Mal), and succinate (Suc)) and a mild decrease for the remaining ligands (glutarate (Glu) and adipate (Adi)). Time-resolved laser fluorescence spectroscopy (TRLFS) was used to obtain information about the aqua ligand, which indirectly indicated the bidentate bindings of these dicarboxylate ligands. A complementary attenuated total reflectance Fourier transform infrared (ATR-FTIR) study on Eu(III), which is a nonradioactive analogue of Am(III) ion, showed that the coordination modes differ depending on the alkyl chain length. Ox and Mal bind to Am(III) via side-on bidentate bindings with two carboxylate groups, resulting in the formation of stable 5- and 6-membered ring structures, respectively. On the other hand, Suc, Glu, and Adi form end-on bidentate bindings with a single carboxylate group, resulting in a 4-membered ring structure. Density functional theory calculations provided details about the bonding properties and supported the experimentally proposed coordination geometries. This study demonstrates that coordination mode-dependent changes in optical properties occur along with thermodynamic stability changes in Am(III)-dicarboxylate complexes.

4.
RSC Adv ; 10(60): 36723-36733, 2020 Oct 01.
Article in English | MEDLINE | ID: mdl-35517939

ABSTRACT

Hydrolysis of tetravalent uranium (U(iv)) and U(iv)-nanoparticle formation kinetics were examined over a wide range of temperatures using spectrophotometric reaction modeling analysis. The characteristic absorption bands representing U4+, U(OH)3+, and a proposed oxohydroxo species were newly identified in the UV region (190-300 nm). Dynamic absorption band changes in the UV and visible regions (360-800 nm) were explored to reevaluate the binary ion interaction coefficients for U(iv) ions and the thermodynamic constants of the primary hydrolysis reaction, including complexation constants, enthalpy, and entropy. No further hydrolysis equilibrium beyond the formation of U(OH)3+ was identified. Instead, an irreversible transformation of U(iv) ions to U(iv)-nanoparticles (NPs) was found to occur exclusively via the formation of a new intermediate species possessing characteristic absorption bands. The kinetic analysis, based on a two-step, pseudo-first-order reaction model, revealed that the rate of the initial step producing the intermediates is highly temperature-dependent with the measured kinetic energy barrier of ∼188 kJ mol-1. With additional experimental evidence, we conclude that the intermediates are oligomeric oxohydroxo U(iv) species occurring from the condensation of U(iv) ions and simultaneously participating in the nucleation and growth process of UO2(cr)-NPs.

5.
Molecules ; 23(9)2018 Sep 08.
Article in English | MEDLINE | ID: mdl-30205542

ABSTRACT

Rotational barrier energy studies to date have focused on the amide bond of aromatic compounds from a kinetic perspective using quantum calculations and nuclear magnetic resonance (NMR). These studies provide valuable information, not only regarding the basic conformational properties of amide bonds but also the molecular gear system, which has recently gained interest. Thus, we investigate the precise motion of the amide bonds of two aromatic compounds using an experimental rotational barrier energy estimation by NMR experiments and a theoretical evaluation of the density functional theory calculation. The theoretical potential energy surface scan method combined with the quadratic synchronous transit 3 method and consideration of additional functional group rotation with optimization and frequency calculations support the results of the variable temperature ¹H NMR, with deviations of less than 1 kcal/mol. This detailed experimental and theoretical research strongly supports molecular gear motion in the aromatic amide system, and the difference in kinetic energy indicates that the electronic effect from the aromatic structure has a key role in conformational movements at different temperatures. Our study provides an enhanced basis for future amide structural dynamics research.


Subject(s)
Amides/chemistry , Magnetic Resonance Imaging , Magnetic Resonance Spectroscopy , Models, Molecular , Molecular Structure , Quantum Theory , Rotation , Thermodynamics
6.
Dalton Trans ; 45(48): 19449-19457, 2016 Dec 06.
Article in English | MEDLINE | ID: mdl-27885365

ABSTRACT

The aim of this work is to determine the solubility product of plutonium hydroxide under reducing conditions and to ascertain the stability of Pu(OH)3 (am) in water. Hydrolysis of Pu(iii) and solubility of Pu(OH)3 (am) were investigated at a constant ionic strength of 0.1 M NaClO4. Coulometric titration was adopted to adjust the pH of plutonium solutions, during which the electrolytic reducing conditions maintained the oxidation state of Pu(iii). Chemical speciation for dissolved plutonium was investigated using sensitive spectrophotometry coupled with a liquid waveguide capillary cell. The spectroscopic investigations indicated that dissolved Pu(iv), Pu(v), and Pu(vi) species were ignorable under these experimental conditions. The absorbance of Pu3+ ions decreased due to hydrolysis of Pu(iii) but the absorbance of Pu(iii) hydrolysis species was not distinguishable. The formation constant for the first hydrolysis species (log *ß'1) determined in the present study is -6.62 ± 0.25. The non-crystalline structure of the plutonium precipitate was observed through X-ray diffraction. The solubility product of Pu(OH)3 (am), log *K's,0 is determined to be 15.23 ± 0.50. These results indicate a stronger tendency for the hydrolysis of Pu(iii) and higher stability (lower solubility) of Pu(OH)3 (am) compared to Am(iii).

7.
Anal Chem ; 85(9): 4279-83, 2013 May 07.
Article in English | MEDLINE | ID: mdl-23534889

ABSTRACT

A simple analytical method based on the simultaneous measurement of the luminescence of hexavalent uranium ions (U(VI)) and the Raman scattering of water, was investigated for determining the concentration of U(VI) in aqueous solutions. Both spectra were measured using a cw semiconductor laser beam at a center wavelength of 405 nm. The empirical calibration curve for the quantitative analysis of U(VI) was obtained by measuring the ratio of the luminescence intensity of U(VI) at 519 nm to the Raman scattering intensity of water at 469 nm. The limit of detection (LOD) in the parts per billion range and a dynamic range from the LOD up to several hundred parts per million were achieved. The concentration of uranium in groundwater determined by this method is in good agreement with the results determined by kinetic phosphorescence analysis and inductively coupled plasma mass spectrometry.


Subject(s)
Lasers , Uranium/analysis , Semiconductors , Solutions , Spectrum Analysis, Raman/instrumentation , Water/chemistry
8.
Biomicrofluidics ; 5(2): 22211, 2011 Jun.
Article in English | MEDLINE | ID: mdl-21799717

ABSTRACT

The process of blood vessel formation is accompanied by very minimal flow in the beginning, followed by increased flow rates once the vessel develops sufficiently. Many studies have been performed for endothelial cells at shear stress levels of 0.1-60 dyn∕cm(2); however, little is known about the effect of extremely slow flows (shear stress levels of 10(-4)-10(-2) dyn∕cm(2)) that endothelial cells may experience during early blood vessel formation where flow-sensing by indirect mass transport sensing rather than through mechanoreceptor sensing mechanisms would become more important. Here, we show that extremely low flows enhance proliferation, adherens junction protein localization, and nitric oxide secretion of endothelial cells, but do not induce actin filament reorganization. The responses of endothelial cells in different flow microenvironments need more attention because increasing evidence shows that endothelial cell behaviors at the extremely slow flow regimes cannot be linearly extrapolated from observations at faster flow rates. The devices and methods described here provide a useful platform for such studies.

9.
Anal Chem ; 82(8): 3300-5, 2010 Apr 15.
Article in English | MEDLINE | ID: mdl-20329749

ABSTRACT

This article describes a thin amperometric nitric oxide (NO) sensor that can be microchannel embedded to enable direct real-time detection of NO produced by cells cultured within the microdevice. A key for achieving the thin ( approximately 1 mm) planar sensor configuration required for sensor-channel integration is the use of gold/indium-tin oxide patterned electrode directly on a porous polymer membrane (pAu/ITO) as the base working electrode. The electrochemically deposited Au-hexacyanoferrate layer on pAu/ITO is used to catalyze NO oxidation to nitrite at lower applied potentials (0.65-0.75 V vs Ag/AgCl) and stabilize current output. Furthermore, use of a gas-permeable membrane to separate internal sensor compartments from the sample phase imparts excellent NO selectivity over common interfering agents (e.g., nitrite, ascorbate, ammonia, etc.) present in culture media and biological fluids. The optimized sensor design reversibly detects NO down to the approximately 1 nM level in stirred buffer and <10 nM in flowing buffer when integrated within a polymeric microfluidic device. We demonstrate utility of the channel-embedded sensor by monitoring NO generation from macrophages cultured within non-gas-permeable microchannels, as they are stimulated with endotoxin.


Subject(s)
Gases/chemistry , Microfluidic Analytical Techniques/methods , Nitric Oxide/chemistry , Animals , Biosensing Techniques , Cell Line, Tumor , Electrochemical Techniques , Electrodes , Gold/chemistry , Mice , Microfluidic Analytical Techniques/instrumentation , Nitric Oxide/analysis , Oxidation-Reduction
10.
Anal Chem ; 81(10): 3714-22, 2009 May 15.
Article in English | MEDLINE | ID: mdl-19382754

ABSTRACT

We report fabrication and characterization of microfluidic devices made of thermoplastic and elastomeric polymers. These hard-soft hybrid material devices are motivated by the combined need for large scale manufacturability, enhanced barrier properties to gas permeation and evaporation of aqueous solutions compared to poly(dimethyl siloxane) (PDMS) devices, and compatibility with deformation-based actuation. Channel features are created on rigid polymers such as polyethylene terephthalate glycol (PETG), cyclic olefin copolymer (COC), and polystyrene (PS) by hot embossing. These "hard tops" are bonded to elastomeric "soft bottoms" (polyurethane (PU) or PDMS-parylene C-PDMS) to create devices that can be used for microfluidic cell culture where deformation-based fluid actuation schemes are used to perfuse and recirculate media. The higher barrier properties of this device compared to PDMS devices enable cell culture with less evaporation and creation of hypoxic conditions.


Subject(s)
Cell Culture Techniques/instrumentation , Microfluidic Analytical Techniques/instrumentation , Oxygen/analysis , Polymers/chemistry , Animals , Cell Culture Techniques/methods , Cell Line, Tumor , Dimethylpolysiloxanes/chemistry , Elastomers , Humans , Mice , Microfluidic Analytical Techniques/methods , Polyethylene Glycols/chemistry , Polyethylene Terephthalates/chemistry , Polystyrenes/chemistry , Polyurethanes/chemistry , Xylenes/chemistry
11.
Biosens Bioelectron ; 24(8): 2441-6, 2009 Apr 15.
Article in English | MEDLINE | ID: mdl-19168347

ABSTRACT

A new S-nitrosothiol (RSNO) detection strategy based on an electrochemical sensor is described for rapidly estimating levels of total RSNOs in blood and other biological samples. The sensor employs a cellulose dialysis membrane covalently modified with an organoselenium catalyst that converts RSNOs to NO at the distal tip of an amperometric NO sensor. The sensor is characterized by very low detection limits (<20 nM), good long-term stability, and can be employed for the rapid detection of total low-molecular-weight (LMW) RSNO levels in whole blood samples using a simple standard addition method. A strategy for detecting macromolecular RSNOs is also demonstrated via use of a transnitrosation reaction with added LMW thiols allowing the estimation of total RSNO levels in blood. The sensor is shown to exhibit high selectivity over nitrosamines and nitrite. Such RSNO detection is potentially useful to reveal correlation between blood RSNO levels and endothelial cell dysfunction, which often is associated with cardiovascular diseases.


Subject(s)
Biosensing Techniques/instrumentation , Blood Chemical Analysis/instrumentation , Electrochemistry/instrumentation , Organoselenium Compounds/chemistry , S-Nitrosothiols/blood , Catalysis , Equipment Design , Equipment Failure Analysis , Reproducibility of Results , Sensitivity and Specificity
12.
Biomaterials ; 28(1): 19-27, 2007 Jan.
Article in English | MEDLINE | ID: mdl-16959311

ABSTRACT

Novel nitric oxide (NO) generating polymeric materials possessing immobilized organoselenium species are described. These materials mimic the capability of small organoselenium molecules as well as a known selenium-containing enzyme, glutathione peroxidase (GPx), by catalytically decomposing S-nitrosothiols (RSNO) into NO and the corresponding free thiol. Model polymeric materials, e.g., cellulose filter paper and polyethylenimine, are modified with an appropriate diselenide species covalently linked to the polymeric structures. Such organoselenium (RSe)-derivatized polymers are shown to generate NO from RSNO species in the presence of an appropriate thiol reducing agent (e.g., glutathione). The likely involvement of both immobilized selenol/selenolate and diselenide species for NO production is suggested via a catalytic pathway, as deduced in separate homogeneous solution phase experiments using non-immobilized forms of small organodiselenide species. Preliminary experiments with the new RSe-polymers clearly demonstrate the ability of such materials to generate NO from RSNO species even after the contact with fresh animal plasma. It is anticipated that such NO generation from endogenous S-nitrosothiols in blood could render RSe-containing polymeric materials more thromboresistant when in contact with flowing blood, owing to NO's ability to inhibit platelet adhesion and activation.


Subject(s)
Nitric Oxide/chemistry , Organoselenium Compounds/chemistry , S-Nitrosothiols/chemistry , Animals , Catalysis , Molecular Structure , Polymers/chemistry , Solutions , Swine
13.
Langmuir ; 22(25): 10830-6, 2006 Dec 05.
Article in English | MEDLINE | ID: mdl-17129067

ABSTRACT

A novel electrochemical device for the direct detection of S-nitrosothiol species (RSNO) is proposed by modifying an amperometric nitric oxide (NO) gas sensor with thin hydrogel layer containing an immobilized organoselenium catalyst. The diselenide, 3,3'-dipropionicdiselenide, is covalently coupled to primary amine groups in polyethylenimine (PEI), which is further cross-linked to form a hydrogel layer on a dialysis membrane support. Such a polymer film containing the organoselenium moiety is capable of decomposing S-nitrosothiols to generate NO(g) at the distal tip of the NO sensor. Under optimized conditions, various RSNOs (e.g., nitrosocysteine (CysNO), nitrosoglutathione (GSNO), etc.) are reversibly detected at

Subject(s)
Biosensing Techniques/methods , Hydrogel, Polyethylene Glycol Dimethacrylate/chemistry , Nitric Oxide/chemistry , Organoselenium Compounds/chemistry , S-Nitrosothiols/analysis , Animals , Catalysis , Electrodes , Molecular Structure , S-Nitrosothiols/chemical synthesis , Sensitivity and Specificity , Sheep , Surface Properties , Time Factors
15.
Anal Chem ; 77(11): 3516-24, 2005 Jun 01.
Article in English | MEDLINE | ID: mdl-15924383

ABSTRACT

The direct amperometric detection of S-nitrosothiol species (RSNOs) is realized by modifying a previously reported amperometric nitric oxide gas sensor with thin hydrophilic polyurethane films containing catalytic Cu(II)/(I) sites. Catalytic Cu(II)/(I)-mediated decomposition of S-nitrosothiols generates NO(g) in the thin polymeric film at the distal tip of the NO sensor. Three different species are examined to create the catalytic layer: (1) a lipophilic Cu(II)-ligand complex; (2) Cu(II)-phosphate salt; and (3) small (3-microm) metallic Cu(0) particles. All three catalytic layers yield reversible amperometric response in proportion to the concentration of S-nitrosothiols (e.g., nitrosocysteine, nitrosoglutathione, S-nitroso-N-acetylcysteine, S-nitrosoalbumin) present in the aqueous test solution. Sensitivity toward the different RSNO species is dependent on the respective catalytic rates of decomposition of the RSNO species by reactive Cu(I), accessibility of the species into the polyurethane layer containing the catalyst, the level of reducing agents (ascorbate) used in solution to help generate reactive Cu(I) species, and the concentration of metal ion complexing agents present in the test solution (e.g., EDTA). Under optimized conditions, all RSNO species can be detected at < or =1 microM levels, with sensor lifetimes of at least 10 days for the sensors based on Cu(II)-phosphate and Cu0 particles. It is further shown that the new RSNO sensors can be used to assess the "NO-generating" ability of fresh blood samples by effectively detecting the total level of reactive RSNO species present in such samples.


Subject(s)
Copper/chemistry , Membranes, Artificial , Nitric Oxide/chemistry , Polymers/chemistry , S-Nitrosothiols/analysis , S-Nitrosothiols/blood , Animals , Catalysis , Electrochemistry , Electrodes , Sensitivity and Specificity , Sheep , Surface Properties , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...