Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Hazard Mater ; 172(2-3): 1623-8, 2009 Dec 30.
Article in English | MEDLINE | ID: mdl-19733432

ABSTRACT

The adsorption of a textile dye, namely, Indanthrene Blue RS (C.I. Vat Blue 4) onto smectite-rich clayey rock (AYD) and its sulphuric acid-activated products (AYDS) in aqueous solution was studied in a batch system with respect to contact time, pH, and temperature. The adsorbents employed were characterized by X-ray diffraction, infrared spectroscopy and specific surface area, cation exchange capacity and point of zero charge were also estimated. The effect of contact time on dye adsorption showed that the equilibrium was reached after a contact time of 40 min for the both adsorbents. The optimum pH for dye retention was found 6.0 for AYDS and 7.3 for AYD. The equilibrium adsorption data were analysed using the Langmuir and Freundlich isotherms. The adsorption capacities (Q(m)) for AYD and AYDS were found 13.92 mg/g and 17.85 mg/g, respectively. The effect of temperature on the adsorption was also investigated; adsorption of Indanthrene Blue RS is an endothermic process. This study demonstrates that all the considered adsorbents can be used as an alternative emerging technology for water treatment.


Subject(s)
Aluminum Silicates/chemistry , Coloring Agents/isolation & purification , Textiles , Water Pollutants, Chemical/isolation & purification , Water Purification/methods , Adsorption , Clay , Hydrogen-Ion Concentration , Silicates/chemistry , Solutions , Temperature
2.
J Hazard Mater ; 156(1-3): 545-51, 2008 Aug 15.
Article in English | MEDLINE | ID: mdl-18243536

ABSTRACT

The adsorption of Pb(2+) ions onto Tunisian smectite-rich clay in aqueous solution was studied in a batch system. Four samples of clay (AYD, AYDh, AYDs, AYDc) were used. The raw AYD clay was sampled in the Coniacian-Early Campanian of Jebel Aïdoudi in El Hamma area (South of Tunisia). AYDh and AYDs corresponds to AYD activated by 2.5 mol/l hydrochloric acid and 2.5 mol/l sulphuric acid, respectively. AYDc corresponds to AYD calcined at different temperatures (100, 200, 300, 400, 500 and 600 degrees C). The raw AYD clay was characterized by X-ray diffraction, chemical analysis, infrared spectroscopy and coupled DTA-TGA. Specific surface area of all the clay samples was determined from nitrogen adsorption isotherms. Preliminary adsorption tests showed that sulphuric acid and hydrochloric acid activation of raw AYD clay enhanced its adsorption capacity for Pb(2+) ions. However, the uptake of Pb(2+) by AYDs was very high compared to that by AYDh. This fact was attributed to the greater solubility of clay minerals in sulphuric acid compared to hydrochloric acid. Thermic activation of AYD clay reduced the Pb(2+) uptake as soon as calcination temperature reaches 200 degrees C. All these preliminary results were well correlated to the variation of the specific surface area of the clay samples. The ability of AYDs sample to remove Pb(2+) from aqueous solutions has been studied at different operating conditions: contact time, adsorbent amount, metal ion concentration and pH. Kinetic experiments showed that the sorption of lead ions on AYDs was very fast and the equilibrium was practically reached after only 20 min. The results revealed also that the adsorption of lead increases with an increase in the solution pH from 1 to 4.5 and then decreases, slightly between pH 4.5 and 6, and rapidly at pH 6.5 due to the precipitation of some Pb(2+) ions. The equilibrium data were analysed using Langmuir isotherm model. The maximum adsorption capacity (Q(0)) increased from 25 to 25.44 mg/g with increasing temperature from 25 to 40 degrees C. Comparative study between sulphuric acid activated clay (AYDs) and powder activated carbon (PAC) for the adsorption of lead was also conducted. The results showed that sulphuric acid activated clay is more efficient than PAC.


Subject(s)
Lead/isolation & purification , Silicates/chemistry , Adsorption , Hydrogen-Ion Concentration , Solutions , Water , X-Ray Diffraction
SELECTION OF CITATIONS
SEARCH DETAIL
...