Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
J Imaging ; 8(9)2022 Aug 30.
Article in English | MEDLINE | ID: mdl-36135400

ABSTRACT

The new reflectance set-up configuration extended the applicability of the photoacoustic (PA) imaging technique to art objects of any thickness and form. Until now, ultrasound gel or distilled water have been necessary as coupling mediums between the immersion-type transducer and the object's surface. These media can compromise the integrity of real artwork; therefore, known applications of reflectance PA imaging have been limited to only experimental mock-ups. In this paper, we evaluate an alternative non-invasive PA coupling medium, agar gel, applied in two layers of different consistency: first, rigid-for the protection of the object's surface, and second, fluid-for the transducer's immersion and movement. Agar gel is widely used in various conservation treatments on cultural heritage objects, and it has been proven to be safely applicable on delicate surfaces. Here, we quantify and compare the contrast and signal-to-noise ratio (SNR) of PA images, obtained in water and in agar gel on the same areas, at equal experimental conditions. The results demonstrate that the technique's performance in agar is comparable to that in water. The study uncovers the advanced potential of the PA approach for revealing hidden features, and is safely applicable for future real-case studies.

2.
J Imaging ; 7(12)2021 Nov 24.
Article in English | MEDLINE | ID: mdl-34940717

ABSTRACT

Revealing precious hidden features by a completely non-invasive approach is one of the crucial issues in the Heritage Science field. In this regard, concealed fresco paintings still represent an analytical challenge. This paper addresses the specific issue in wall painting diagnostics by the photoacoustic (PA) imaging technique, already proven to be efficient in revealing underdrawings and internal stratigraphy in movable paintings on paper and canvas. A newly set-up reflection PA prototype was applied here for the first time to probe the charcoal, graphite and sinopia hidden sketch drawings in concealed (gypsum, limewash, overpainted) wall paintings. The results presented here push forward the frontiers of the PA imaging technique and point to its potential effectiveness of revealing hidden underdrawings in historical wall paintings with complex stratigraphy.

3.
J Imaging ; 7(9)2021 Sep 10.
Article in English | MEDLINE | ID: mdl-34564109

ABSTRACT

Photoacoustic imaging is a novel, rapidly expanding technique, which has recently found several applications in artwork diagnostics, including the uncovering of hidden layers in paintings and multilayered documents, as well as the thickness measurement of optically turbid paint layers with high accuracy. However, thus far, all the presented photoacoustic-based imaging technologies dedicated to such measurements have been strictly limited to thin objects due to the detection of signals in transmission geometry. Unavoidably, this issue restricts seriously the applicability of the imaging method, hindering investigations over a wide range of cultural heritage objects with diverse geometrical and structural features. Here, we present an epi-illumination photoacoustic apparatus for diagnosis in heritage science, which integrates laser excitation and respective signal detection on one side, aiming to provide universal information in objects of arbitrary thickness and shape. To evaluate the capabilities of the developed system, we imaged thickly painted mock-ups, in an attempt to reveal hidden graphite layers covered by various optically turbid paints, and compared the measurements with standard near-infrared (NIR) imaging. The obtained results prove that photoacoustic signals reveal underlying sketches with up to 8 times improved contrast, thus paving the way for more relevant applications in the field.

4.
J Imaging ; 6(10)2020 Oct 12.
Article in English | MEDLINE | ID: mdl-34460549

ABSTRACT

This review concerns the challenges and perspectives of on-site non-invasive measurements applied to wall mosaics. Wall mosaics, during the centuries, decorated numerous buildings, nowadays being part of world cultural heritage. The preservation and maintenance of these valuable decorations are undoubtedly directly dependent on identifying possible problems that could affect their hidden structure. On-site non-invasive methods, using different contact or no-contact technologies, can offer support in this specific field of application. The choice of the appropriate technique or combination of different techniques depends, in general, on the depth of investigation, the resolution, the possibility to have direct contact with the surfaces or, on the contrary, limited accessibility of the wall mosaics due to their location (e.g., vaults), as well as deterioration problems, (e.g., voids, detachments, or humidity effects). This review paper provides a brief overview of selected recent studies regarding non-invasive methods applied to the analysis of wall mosaics. This review, discussing the assessment of advantages and limitations for each method here considered, also considers possible future developments of imaging techniques in this specific context for cultural heritage applications.

5.
J Imaging ; 5(6)2019 Jun 10.
Article in English | MEDLINE | ID: mdl-34460496

ABSTRACT

This paper presents first laboratory results of a combined approach carried out by the use of three different portable non-invasive electromagnetic methods: Digital holographic speckle pattern interferometry (DHSPI), stimulated infrared thermography (SIRT) and holographic subsurface radar (HSR), proposed for the analysis of a custom-built wall mosaic model. The model reproduces a series of defects (e.g., cracks, voids, detachments), simulating common deteriorated, restored or reshuffled areas in wall mosaics. DHSPI and SIRT, already well known in the field of non-destructive (NDT) methods, are full-field contactless techniques, providing complementary information on the subsurface hidden discontinuities. The use of DHSPI, based on optical imaging and interferometry, provides remote control and visualization of surface micro-deformation after induced thermal stress, while the use of SIRT allows visualization of thermal energy diffusion in the surface upon the induced thermal stress. DHSPI and SIRT data are complemented by the use of HSR, a contact method that provides localized information about the distribution of contrasts in dielectric permittivity and related possible anomalies. The experimental results, made by the combined use of these methods to the identification of the known anomalies in the mosaic model, are presented and discussed here as a contribution in the development of an efficient non-invasive approach to the in-situ subsurface analysis of ancient wall mosaics.

SELECTION OF CITATIONS
SEARCH DETAIL
...