Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Carbohydr Polym ; 230: 115634, 2020 Feb 15.
Article in English | MEDLINE | ID: mdl-31887867

ABSTRACT

Simultaneous condensation of aromatic aldehydes (ArxCHO; x = 1-4) on chitosan biopolymer (CS) affords, after water-evaporation, structurally-conjugated aryl-functionalized CS-Arx-f films. Similarly, cooperative assembly of two-dimensional nanometric graphene oxide (GO), aromatic aldehyde and chitosan provides transparent, flexible and crack-free aldehyde-functionalized, ternary-reinforced CS-Arx-GO-f nanocomposite films. Homogenous films were obtained using ortho-hydroxybenzaldehyde Ar1 while the para-hydroxybenzaldehyde Ar4 was prone to packing inside. Textural and mechanical properties were investigated and expectedly, significant improvement was found for CS-Ar1-GO-f because of the great dispersion of the aromatic and the presence of the filler. The sensitivity of unsaturated CN imine bond to hydrolysis was explored for triggering controlled release of aromatics from the as-prepared films. All of them were found to induce a time-dependent aromatic release. It has been moreover observed that the release was significantly delayed in CS-Arx-GO-f compared to CS-Arx-f, a fact attributed to the interplay of the ring with the basal and edges of graphene oxide, through π-π stacking and additional hydrogen bonding interactions. This finding shows that beyond the conventional wisdom using fillers for improving thermal and mechanical properties, the tiny carbon sheets can act as a regulator for aldehyde release, thereby providing a way for more controlled chemical delivery from confined nanocomposites.

2.
Carbohydr Polym ; 183: 287-293, 2018 Mar 01.
Article in English | MEDLINE | ID: mdl-29352886

ABSTRACT

Temporal release of synergistic and/or complementary chemicals (e.g.: drugs) is recognized as extremely challenging because of their frequently intertwined kinetic delivery and presently, straightforward concepts enabling to circumvent this bottleneck are missing in the open literature. In this framework, we report herein on aldehyde-functionalized, transparent and flexible chitosan-montmorillonite hybrid films that act as a new generation of eco-friendly, controlled-chemical release bioplastics. These dynamically-assembled nanomaterials are designed by a ternary assembly from biowaste derived chitin biopolymer, aromatic aldehydes and layered clay nanoparticles. On the basis of their geometrical and conformational properties, the oxygenated groups on the grafted aromatics interact preferentially with either the base Schiff belonging to the carbohydrate (via intramolecular CNHO-Ar known as "imine clip") or with the hydroxyl groups belonging to the clay surface (via intermolecular Si-OHO-Ar). The exfoliated clay nanoparticles within the carbohydrate polymer enables either accelerating or slowing down of the imine (CN) hydrolysis depending on the interaction of the conjugated aromatics. This provides the driving force for fine tuning host-guest interactions at the molecular level and constitutes an entry toward subtle discrimination of different chemicals (e.g. complementary fertilizers, synergistic drugs) during their sequential release.


Subject(s)
Bentonite/chemistry , Biocompatible Materials/chemical synthesis , Chitosan/analogs & derivatives , Drug Carriers/chemical synthesis , Aldehydes/chemistry , Biodegradable Plastics/chemical synthesis , Drug Liberation , Nanoparticles/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...