Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
PLoS One ; 12(9): e0184217, 2017.
Article in English | MEDLINE | ID: mdl-28877253

ABSTRACT

Phase-contrast x-ray computed tomography (PCCT) is currently investigated as an interesting extension of conventional CT, providing high soft-tissue contrast even if examining weakly absorbing specimen. Until now, the potential for dose reduction was thought to be limited compared to attenuation CT, since meaningful phase retrieval fails for scans with very low photon counts when using the conventional phase retrieval method via phase stepping. In this work, we examine the statistical behaviour of the reverse projection method, an alternative phase retrieval approach and compare the results to the conventional phase retrieval technique. We investigate the noise levels in the projections as well as the image quality and quantitative accuracy of the reconstructed tomographic volumes. The results of our study show that this method performs better in a low-dose scenario than the conventional phase retrieval approach, resulting in lower noise levels, enhanced image quality and more accurate quantitative values. Overall, we demonstrate that the lower statistical limit of the phase stepping procedure as proposed by recent literature does not apply to this alternative phase retrieval technique. However, further development is necessary to overcome experimental challenges posed by this method which would enable mainstream or even clinical application of PCCT.


Subject(s)
Tomography, X-Ray Computed/methods , Humans , Image Enhancement/methods , Image Processing, Computer-Assisted/methods , Radiation Dosage , Statistics as Topic
2.
Sci Rep ; 6: 36991, 2016 11 14.
Article in English | MEDLINE | ID: mdl-27841341

ABSTRACT

Breast microcalcifications play an essential role in the detection and evaluation of early breast cancer in clinical diagnostics. However, in digital mammography, microcalcifications are merely graded with respect to their global appearance within the mammogram, while their interior microstructure remains spatially unresolved and therefore not considered in cancer risk stratification. In this article, we exploit the sub-pixel resolution sensitivity of X-ray dark-field contrast for clinical microcalcification assessment. We demonstrate that the micromorphology, rather than chemical composition of microcalcification clusters (as hypothesised by recent literature), determines their absorption and small-angle scattering characteristics. We show that a quantitative classification of the inherent microstructure as ultra-fine, fine, pleomorphic and coarse textured is possible. Insights underlying the micromorphological nature of breast calcifications are verified by comprehensive high-resolution micro-CT measurements. We test the determined microtexture of microcalcifications as an indicator for malignancy and demonstrate its potential to improve breast cancer diagnosis, by providing a non-invasive tool for sub-resolution microcalcification assessment. Our results indicate that dark-field imaging of microcalcifications may enhance the diagnostic validity of current microcalcification analysis and reduce the number of invasive procedures.


Subject(s)
Breast Neoplasms/diagnosis , Breast/diagnostic imaging , Breast Neoplasms/diagnostic imaging , Calcinosis/diagnostic imaging , Female , Humans , Mammography , X-Ray Microtomography
3.
J Synchrotron Radiat ; 23(Pt 5): 1202-9, 2016 09 01.
Article in English | MEDLINE | ID: mdl-27577776

ABSTRACT

X-ray phase-contrast imaging is an effective approach to drastically increase the contrast and sensitivity of microtomographic techniques. Numerous approaches to depict the real part of the complex-valued refractive index of a specimen are nowadays available. A comparative study using experimental data from grating-based interferometry and propagation-based phase contrast combined with single-distance phase retrieval applied to a non-homogeneous sample is presented (acquired at beamline ID19-ESRF). It is shown that grating-based interferometry can handle density gradients in a superior manner. The study underlines the complementarity of the two techniques for practical applications.

5.
Eur Radiol ; 25(12): 3659-68, 2015 Dec.
Article in English | MEDLINE | ID: mdl-25956934

ABSTRACT

OBJECTIVES: Conventional X-ray attenuation-based contrast is inherently low for the soft-tissue components of the female breast. To overcome this limitation, we investigate the diagnostic merits arising from dark-field mammography by means of certain tumour structures enclosed within freshly dissected mastectomy samples. METHODS: We performed grating-based absorption, absolute phase and dark-field mammography of three freshly dissected mastectomy samples containing bi- and multifocal carcinoma using a compact, laboratory Talbot-Lau interferometer. Preoperative in vivo imaging (digital mammography, ultrasound, MRI), postoperative histopathological analysis and ex vivo digital mammograms of all samples were acquired for the diagnostic verification of our results. RESULTS: In the diagnosis of multifocal tumour growth, dark-field mammography seems superior to standard breast imaging modalities, providing a better resolution of small, calcified tumour nodules, demarcation of tumour boundaries with desmoplastic stromal response and spiculated soft-tissue strands extending from an invasive ductal breast cancer. CONCLUSIONS: On the basis of selected cases, we demonstrate that dark-field mammography is capable of outperforming conventional mammographic imaging of tumour features in both calcified and non-calcified tumours. Presuming dose optimization, our results encourage further studies on larger patient cohorts to identify those patients that will benefit the most from this promising additional imaging modality. KEY POINTS: • X-ray dark-field mammography provides significantly improved visualization of tumour features • X-ray dark-field mammography is capable of outperforming conventional mammographic imaging • X-ray dark-field mammography provides imaging sensitivity towards highly dispersed calcium grains.


Subject(s)
Breast Neoplasms/diagnostic imaging , Image Processing, Computer-Assisted , Mammography/methods , Breast Neoplasms/surgery , Female , Humans , Mastectomy
6.
Sci Rep ; 5: 9527, 2015 Apr 15.
Article in English | MEDLINE | ID: mdl-25873414

ABSTRACT

Treatment of renal calculi is highly dependent on the chemical composition of the stone in question, which is difficult to determine using standard imaging techniques. The objective of this study is to evaluate the potential of scatter-sensitive X-ray dark-field radiography to differentiate between the most common types of kidney stones in clinical practice. Here, we examine the absorption-to-scattering ratio of 118 extracted kidney stones with a laboratory Talbot-Lau Interferometer. Depending on their chemical composition, microscopic growth structure and morphology the various types of kidney stones show strongly varying, partially opposite contrasts in absorption and dark-field imaging. By assessing the microscopic calculi morphology with high resolution micro-computed tomography measurements, we illustrate the dependence of dark-field signal strength on the respective stone type. Finally, we utilize X-ray dark-field radiography as a non-invasive, highly sensitive (100%) and specific (97%) tool for the differentiation of calcium oxalate, uric acid and mixed types of stones, while additionally improving the detectability of radio-lucent calculi. We prove clinical feasibility of the here proposed method by accurately classifying renal stones, embedded within a fresh pig kidney, using dose-compatible measurements and a quick and simple visual inspection.


Subject(s)
Kidney Calculi/chemistry , Kidney Calculi/diagnostic imaging , X-Ray Microtomography , Adsorption , Calcium Oxalate/chemistry , Humans , ROC Curve , Reproducibility of Results , Uric Acid/chemistry , X-Ray Microtomography/methods
7.
Biomed Opt Express ; 5(10): 3739-47, 2014 Oct 01.
Article in English | MEDLINE | ID: mdl-25360386

ABSTRACT

Numerical wave-optical simulations of X-ray differential phase-contrast imaging using grating interferometry require the oversampling of gratings and object structures in the range of few micrometers. Consequently, fields of view of few millimeters already use large amounts of a computer's main memory to store the propagating wave front, limiting the scope of the investigations to only small-scale problems. In this study, we apply an approximation to the Fresnel-Kirchhoff diffraction theory to overcome these restrictions by dividing the two-dimensional wave front up into 1D lines, which are processed separately. The approach enables simulations with samples of clinically relevant dimensions by significantly reducing the memory footprint and the execution time and, thus, allows the qualitative comparison of different setup configurations. We analyze advantages as well as limitations and present the simulation of a virtual mammography phantom of several centimeters of size.

8.
PLoS One ; 9(5): e93502, 2014.
Article in English | MEDLINE | ID: mdl-24824594

ABSTRACT

Phase-contrast x-ray imaging is a promising improvement of conventional absorption-based mammography for early tumor detection. This potential has been demonstrated recently, utilizing structured gratings to obtain differential phase and dark-field scattering images. However, the inherently anisotropic imaging sensitivity of the proposed mono-directional approach yields only insufficient diagnostic information, and has low diagnostic sensitivity to highly oriented structures. To overcome these limitations, we present a two-directional x-ray phase-contrast mammography approach and demonstrate its advantages by applying it to a freshly dissected, cancerous mastectomy breast specimen. We illustrate that the two-directional scanning procedure overcomes the insufficient diagnostic value of a single scan, and reliably detects tumor structures, independently from their orientation within the breast. Our results indicate the indispensable diagnostic necessity and benefit of a multi-directional approach for x-ray phase-contrast mammography.


Subject(s)
Breast Neoplasms/pathology , Breast/pathology , Mammography/methods , Diagnostic Imaging , Female , Humans , Sensitivity and Specificity
9.
PLoS One ; 9(5): e97101, 2014.
Article in English | MEDLINE | ID: mdl-24824169

ABSTRACT

BACKGROUND: Fibroadenoma is the most common benign solid breast lesion type and a very common cause for histologic assessment. To justify a conservative therapy, a highly specific discrimination between fibroadenomas and other breast lesions is crucial. Phase-contrast imaging offers improved soft-tissue contrast and differentiability of fine structures combined with the potential of 3-dimensional imaging. In this study we assessed the potential of grating-based phase-contrast CT imaging for visualizing diagnostically relevant features of fibroadenomas. MATERIALS AND METHODS: Grating-based phase-contrast CT was performed on six ex-vivo formalin-fixed breast specimens containing a fibroadenoma and three samples containing benign changes that resemble fibroadenomas using Talbot Lau interferometry and a polychromatic X-ray source. Phase-contrast and simultaneously acquired absorption-based 3D-datasets were manually matched with corresponding histological slices. The visibility of diagnostically valuable features was assessed in comparison with histology as the gold-standard. RESULTS: In all cases, matching of grating-based phase-contrast CT images and histology was successfully completed. Grating-based phase-contrast CT showed greatly improved differentiation of fine structures and provided accurate depiction of strands of fibrous tissue within the fibroadenomas as well as of the diagnostically valuable dilated, branched ductuli of the fibroadenomas. A clear demarcation of tumor boundaries in all cases was provided by phase- but not absorption-contrast CT. CONCLUSIONS: Pending successful translation of the technology to a clinical setting and considerable reduction of the required dose, the data presented here suggest that grating-based phase-contrast CT may be used as a supplementary non-invasive diagnostic tool in breast diagnostics. Phase-contrast CT may thus contribute to the reduction of false positive findings and reduce the recall and core biopsy rate in population-based screening. Phase-contrast CT may further be used to assist during histopathological workup, offering a 3D view of the tumor and helping to identify diagnostically valuable tissue sections within large tumors.


Subject(s)
Breast Neoplasms/diagnostic imaging , Fibroadenoma/diagnostic imaging , Interferometry/methods , Tomography, X-Ray Computed/methods , Female , Humans
10.
Opt Express ; 22(26): 32107-18, 2014 Dec 29.
Article in English | MEDLINE | ID: mdl-25607176

ABSTRACT

Phase-contrast x-ray computed tomography has a high potential to become clinically implemented because of its complementarity to conventional absorption-contrast.In this study, we investigate noise-reducing but resolution-preserving analytical reconstruction methods to improve differential phase-contrast imaging. We apply the non-linear Perona-Malik filter on phase-contrast data prior or post filtered backprojected reconstruction. Secondly, the Hilbert kernel is replaced by regularized iterative integration followed by ramp filtered backprojection as used for absorption-contrast imaging. Combining the Perona-Malik filter with this integration algorithm allows to successfully reveal relevant sample features, quantitatively confirmed by significantly increased structural similarity indices and contrast-to-noise ratios. With this concept, phase-contrast imaging can be performed at considerably lower dose.


Subject(s)
Algorithms , Radiographic Image Enhancement/methods , Radiographic Image Interpretation, Computer-Assisted/methods , Tomography, X-Ray Computed/methods , X-Ray Diffraction/methods , Nonlinear Dynamics , Reproducibility of Results , Sensitivity and Specificity
11.
Z Med Phys ; 23(3): 176-85, 2013 Sep.
Article in English | MEDLINE | ID: mdl-23453793

ABSTRACT

In this review article we describe the development of grating-based X-ray phase-contrast imaging, with particular emphasis on potential biomedical applications of the technology. We review the basics of image formation in grating-based phase-contrast and dark-field radiography and present some exemplary multimodal radiography results obtained with laboratory X-ray sources. Furthermore, we discuss the theoretical concepts to extend grating-based multimodal radiography to quantitative transmission, phase-contrast, and dark-field scattering computed tomography.


Subject(s)
Radiographic Image Interpretation, Computer-Assisted/methods , Radiography/methods , Refractometry/methods , X-Ray Diffraction/methods , Animals , Humans , Radiographic Image Interpretation, Computer-Assisted/instrumentation , Radiography/instrumentation , Refractometry/instrumentation , X-Ray Diffraction/instrumentation
12.
Med Phys ; 38(3): 1189-95, 2011 Mar.
Article in English | MEDLINE | ID: mdl-21520831

ABSTRACT

PURPOSE: In this work, the authors investigate how beam hardening affects the image formation in x-ray phase-contrast imaging and consecutively develop a correction algorithm based on the results of the analysis. METHODS: The authors' approach utilizes a recently developed x-ray imaging technique using a grating interferometer capable of visualizing the differential phase shift of a wave front traversing an object. An analytical description of beam hardening is given, highlighting differences between attenuation and phase-contrast imaging. The authors present exemplary beam hardening artifacts for a number of well-defined samples in measurements at a compact laboratory setup using a polychromatic source. RESULTS: Despite the differences in image formation, the authors show that beam hardening leads to a similar reduction of image quality in phase-contrast imaging as in conventional attenuation-contrast imaging. Additionally, the authors demonstrate that for homogeneous objects, beam hardening artifacts can be corrected by a linearization technique, applicable to all kinds of phase-contrast methods using polychromatic sources. CONCLUSIONS: The evaluated correction algorithm is shown to yield good results for a number of simple test objects and can thus be advocated in medical imaging and nondestructive testing.


Subject(s)
Tomography, X-Ray Computed/methods , Image Processing, Computer-Assisted , Interferometry
SELECTION OF CITATIONS
SEARCH DETAIL
...