Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
iScience ; 26(2): 106031, 2023 Feb 17.
Article in English | MEDLINE | ID: mdl-36824281

ABSTRACT

The hologenome concept considers the entity formed by a host and its microbiota, the holobiont, as new level of hierarchical organization subject to neutral and selective forces. We used grafted plants to formally evaluate the hologenome concept. We analyzed the root-endosphere microbiota of two independent watermelon and grapevine plant systems, including ungrafted and reciprocal-grafting combinations. Grafted and ungrafted hosts harbor markedly different microbiota compositions. Furthermore, the results indicate a non-random assembly of bacterial communities inhabiting the root endosphere of chimeric plants with interactive effect of both the rootstock and scion on the recruitment of microorganisms. Because chimeric plants did not have a random microbiota, the null hypothesis that holobionts assemble randomly and hologenome concept is an intellectual construction only can be rejected. The study supports the relevance of hologenome as biological level of organization and opens new avenues for a better fundamental understanding of plants as holobionts.

2.
Mol Ecol ; 32(10): 2413-2427, 2023 05.
Article in English | MEDLINE | ID: mdl-35892285

ABSTRACT

Understanding microbial dispersal is critical to understand the dynamics and evolution of microbial communities. However, microbial dispersal is difficult to study because of uncertainty about their vectors of migration. This applies to both microbial communities in natural and human-associated environments. Here, we studied microbial dispersal along the sourdoughs bread-making chain using a participatory research approach. Sourdough is a naturally fermented mixture of flour and water. It hosts a community of bacteria and yeasts whose origins are only partially known. We analysed the potential of wheat grains and flour to serve as an inoculum for sourdough microbial communities using 16S rDNA and ITS1 metabarcoding. First, in an experiment involving farmers, a miller and bakers, we followed the microbiota from grains to newly initiated and propagated sourdoughs. Second, we compared the microbiota of 46 sourdough samples collected everywhere in France, and of the flour used for their back-slopping. The core microbiota detected on the seeds, in the flour and in the sourdough was composed mainly of microbes known to be associated with plants and not living in sourdoughs. No sourdough yeast species were detected on grains and flours. Sourdough lactic acid bacteria were rarely found in flour. When they were, they did not have the same amplicon sequence variant (ASV) as found in the corresponding sourdough. However, the low sequencing depth for bacteria in flour did not allow us to draw definitive conclusion. Thus, our results showed that sourdough yeasts did not come from flour, and suggest that neither do sourdough LAB.


Subject(s)
Microbiota , Triticum , Humans , Triticum/microbiology , Community-Based Participatory Research , Fermentation , Food Microbiology , Microbiota/genetics , Bacteria/genetics , Yeasts/genetics , Bread/analysis , Bread/microbiology
3.
Plant Environ Interact ; 2(5): 235-248, 2021 Oct.
Article in English | MEDLINE | ID: mdl-37284513

ABSTRACT

Modern plant breeding and agrosystems artificialization could have altered plants' ability to filter and recruit beneficial microorganisms in its microbiota. Thus, compared to modern cultivars, we hypothesized that root-endosphere microbiota in modern wheat cultivars are less resistant to colonization by fungi and bacteria and thus more susceptible to also recruit more pathogens. We used an in-field experimental design including six wheat varieties (three ancient vs. three modern) grown in monoculture and in mixture (three replicates each). Endospheric microbiota of wheat roots were analyzed on four individuals sampled randomly in each plot. Composition-based clustering of sequences was then characterized from amplicon mass-sequencing. We show that the bacterial and fungal microbiota composition in wheat roots differed between ancient and modern wheat cultivar categories. However, the responses observed varied with the group considered. Modern cultivars harbored higher richness of bacterial and fungal pathogens than ancient cultivars. Both cultivar types displayed specific indicator species. A synergistic effect was identified in mixtures of modern cultivars with a higher root endospheric mycobiota richness than expected from a null model. The present study shows the effect of plant breeding on the microbiota associated plant roots. The results call for making a diagnosis of the cultivar's endospheric-microbiota composition. These new results also suggest the importance of a holobiont-vision while considering plant selection in crops and call for better integration of symbiosis in the development of next-generation agricultural practices.

4.
Int J Mol Sci ; 18(3)2017 Feb 28.
Article in English | MEDLINE | ID: mdl-28264476

ABSTRACT

Recognizing both the stakes of traditional European common bean diversity and the role farmers' and gardeners' networks play in maintaining this diversity, the present study examines the role that local adaptation plays for the management of common bean diversity in situ. To the purpose, four historical bean varieties and one modern control were multiplied on two organic farms for three growing seasons. The fifteen resulting populations, the initial ones and two populations of each variety obtained after the three years of multiplication, were then grown in a common garden. Twenty-two Simple Sequence Repeat (SSR) markers and 13 phenotypic traits were assessed. In total, 68.2% of tested markers were polymorphic and a total of 66 different alleles were identified. FST analysis showed that the genetic composition of two varieties multiplied in different environments changed. At the phenotypic level, differences were observed in flowering date and leaf length. Results indicate that three years of multiplication suffice for local adaptation to occur. The spatial dynamics of genetic and phenotypic bean diversity imply that the maintenance of diversity should be considered at the scale of the network, rather than individual farms and gardens. The microevolution of bean populations within networks of gardens and farms emerges as a research perspective.


Subject(s)
Adaptation, Biological , Biodiversity , Phaseolus/classification , Phaseolus/physiology , Alleles , Evolution, Molecular , Genetic Variation , Genetics, Population , Genotype , Microsatellite Repeats , Organic Agriculture , Phenotype
5.
Environ Microbiol ; 18(6): 1792-804, 2016 06.
Article in English | MEDLINE | ID: mdl-26171841

ABSTRACT

Seeds have evolved in association with diverse microbial assemblages that may influence plant growth and health. However, little is known about the composition of seed-associated microbial assemblages and the ecological processes shaping their structures. In this work, we monitored the relative influence of the host genotypes and terroir on the structure of the seed microbiota through metabarcoding analysis of different microbial assemblages associated to five different bean cultivars harvested in two distinct farms. Overall, few bacterial and fungal operational taxonomic units (OTUs) were conserved across all seed samples. The lack of shared OTUs between samples is explained by a significant effect of the farm site on the structure of microbial assemblage, which explained 12.2% and 39.7% of variance in bacterial and fungal diversity across samples. This site-specific effect is reflected by the significant enrichment of 70 OTUs in Brittany and 88 OTUs in Luxembourg that lead to differences in co-occurrence patterns. In contrast, variance in microbial assemblage structure was not explained by host genotype. Altogether, these results suggest that seed-associated microbial assemblage is determined by niche-based processes and that the terroir is a key driver of these selective forces.


Subject(s)
Bacteria/classification , Bacteria/isolation & purification , Fungi/classification , Fungi/isolation & purification , Microbiota , Seeds/microbiology , Bacteria/genetics , Ecosystem , Fungi/genetics
6.
Sex Plant Reprod ; 23(2): 141-51, 2010 Jun.
Article in English | MEDLINE | ID: mdl-20490967

ABSTRACT

Self-incompatibility (SI) is thought to have played a key role in the evolution of species as it promotes their outcrossing through the recognition and rejection of self-pollen grains. In most species, SI is under the control of a complex, multiallelic S-locus. The recognition system is associated with quantitative variations of the strength of the SI reaction; the origin of these variations is still not elucidated. To define the genetic regulations involved, we studied the variability of the SI response in homozygous S 15 S 15 plants in cauliflower. These plants were obtained from a self-progeny of a self-compatible (SC) plant heterozygous for S 15, which was generated after five selfing generations from one strongly self-incompatible initial plant. We found a continuous phenotypic variation for SI response in the offspring plants homozygous for the S 15 haplotype, from the strict SI reaction to self-compatibility, with a great proportion of the plants being partially self-compatible (PSC). Decrease in SI levels was also observed during the life of the flower. The number of pollen tubes passing through the stigma barrier was higher when counted 3 or 5 days after pollination than one day after pollination. Analysis of the expression of the two key genes regulating self-pollen recognition in cauliflower, the S-locus receptor kinase (SRK) and S-locus cysteine-rich (SCR/SP11) genes, revealed that self-compatibility or PSC was associated with decreased SRK or SCR/SP11 expression. Our work shows the particularly high level of phenotypic plasticity of the SI response associated with certain S-haplotypes in cauliflower.


Subject(s)
Brassica/genetics , Gene Expression Regulation, Plant , Brassica/growth & development , Brassica/metabolism , Genetic Variation , Haplotypes , Phenotype , Plant Proteins/genetics , Plant Proteins/metabolism , Pollen/genetics , Pollen/growth & development , Pollen/metabolism , Protein Kinases/genetics , Protein Kinases/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...