Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
1.
Front Physiol ; 15: 1340166, 2024.
Article in English | MEDLINE | ID: mdl-38681141

ABSTRACT

Background: Flavin monooxygenases (FMOs) are enzymes responsible for the oxidation of a broad spectrum of exogenous and endogenous amines. There is increasing evidence that trimethylamine (TMA), a compound produced by gut bacteria and also recognized as an industrial pollutant, contributes to cardiovascular diseases. FMOs convert TMA into trimethylamine oxide (TMAO), which is an emerging marker of cardiovascular risk. This study hypothesized that blood pressure phenotypes in rats might be associated with variations in the expression of FMOs. Methods: The expression of FMO1, FMO3, and FMO5 was evaluated in the kidneys, liver, lungs, small intestine, and large intestine of normotensive male Wistar-Kyoto rats (WKY) and two distinct hypertensive rat models: spontaneously hypertensive rats (SHRs) and WKY rats with angiotensin II-induced hypertension (WKY-ANG). Plasma concentrations of TMA and TMAO were measured at baseline and after intravenous administration of TMA using liquid chromatography-mass spectrometry (LC-MS). Results: We found that the expression of FMOs in WKY, SHR, and WKY-ANG rats was in the descending order of FMO3 > FMO1 >> FMO5. The highest expression of FMOs was observed in the liver. Notably, SHRs exhibited a significantly elevated expression of FMO3 in the liver compared to WKY and WKY-ANG rats. Additionally, the plasma TMAO/TMA ratio was significantly higher in SHRs than in WKY rats. Conclusion: SHRs demonstrate enhanced expression of FMO3 and a higher plasma TMAO/TMA ratio. The variability in the expression of FMOs and the metabolism of amines might contribute to the hypertensive phenotype observed in SHRs.

2.
PLoS One ; 19(1): e0297474, 2024.
Article in English | MEDLINE | ID: mdl-38266015

ABSTRACT

INTRODUCTION: Increased plasma trimethylamine oxide (TMAO) is observed in cardiovascular and metabolic diseases, originating from the gut microbiota product, trimethylamine (TMA), via flavin-containing monooxygenases (FMOs)-dependent oxidation. Numerous studies have investigated the association between plasma TMAO and various pathologies, yet limited knowledge exists regarding tissue concentrations of TMAO, TMAO precursors, and interspecies variability. METHODS: Chromatography coupled with mass spectrometry was employed to evaluate tissue concentrations of TMAO and its precursors in adult male mice, rats, and guinea pigs. FMO mRNA and protein levels were assessed through PCR and Western blot, respectively. RESULTS: Plasma TMAO levels were similar among the studied species. However, significant differences in tissue concentrations of TMAO were observed between mice, rats, and guinea pigs. The rat renal medulla exhibited the highest TMAO concentration, while the lowest was found in the mouse liver. Mice demonstrated significantly higher plasma TMA concentrations compared to rats and guinea pigs, with the highest TMA concentration found in the mouse renal medulla and the lowest in the rat lungs. FMO5 exhibited the highest expression in mouse liver, while FMO3 was highly expressed in rats. Guinea pigs displayed low expression of FMOs in this tissue. CONCLUSION: Despite similar plasma TMAO levels, mice, rats, and guinea pigs exhibited significant differences in tissue concentrations of TMA, TMAO, and FMO expression. These interspecies variations should be considered in the design and interpretation of experimental studies. Furthermore, these findings may suggest a diverse importance of the TMAO pathway in the physiology of the evaluated species.


Subject(s)
Metabolic Diseases , Methylamines , Male , Rats , Mice , Guinea Pigs , Animals , Bacteria , Biomarkers , Lung
3.
PLoS One ; 19(1): e0294926, 2024.
Article in English | MEDLINE | ID: mdl-38166023

ABSTRACT

Hypertension leads to water-electrolyte disturbances and end-organ damage. Betaine is an osmolyte protecting cells against electrolyte imbalance and osmotic stress, particularly in the kidneys. This study aimed to evaluate tissue levels and hemodynamic and renal effects of betaine in normotensive and hypertensive rats. Betaine levels were assessed using high-performance liquid chromatography-mass spectrometry (HPLC-MS) in normotensive rats (Wistar-Kyoto, WKYs) and Spontaneously Hypertensive rats (SHRs), a model of genetic hypertension. Acute effects of IV betaine on blood pressure, heart rate, and minute diuresis were evaluated. Gene and protein expression of chosen kidney betaine transporters (SLC6a12 and SLC6a20) were assessed using real-time PCR and Western blot. Compared to normotensive rats, SHRs showed significantly lower concentration of betaine in blood serum, the lungs, liver, and renal medulla. These changes were associated with higher urinary excretion of betaine in SHRs (0.20 ± 0.04 vs. 0.09 ± 0.02 mg/ 24h/ 100g b.w., p = 0.036). In acute experiments, betaine increased diuresis without significantly affecting arterial blood pressure. The diuretic response was greater in SHRs than in WKYs. There were no significant differences in renal expression of betaine transporters between WKYs and SHRs. Increased renal excretion of betaine contributes to decreased concentration of the protective osmolyte in tissues of hypertensive rats. These findings pave the way for studies evaluating a causal relation between depleted betaine and hypertensive organ damage, including kidney injury.


Subject(s)
Betaine , Hypertension , Rats , Animals , Betaine/pharmacology , Betaine/metabolism , Rats, Inbred WKY , Diuretics/pharmacology , Renal Elimination , Hypertension/genetics , Kidney/metabolism , Rats, Inbred SHR , Blood Pressure , Electrolytes/metabolism
4.
Discov Med ; 35(177): 492-502, 2023 08.
Article in English | MEDLINE | ID: mdl-37553303

ABSTRACT

BACKGROUND: Osmolytes are naturally occurring compounds that protect cells from osmotic stress in high-osmolarity tissues, such as the kidney medulla. Some amino acids, including taurine, betaine, glycine, alanine, and sarcosine, are known to act as osmolytes. This study aimed to establish the levels of these amino acids in body fluids and tissues of laboratory animals used as models for human diseases in biomedical research. METHODS: Liquid chromatography coupled with mass spectrometry was used to quantify taurine, glycine, betaine, alanine, beta-alanine, and sarcosine in plasma, urine, and tissues of adult, male mice, rats and guinea pigs. RESULTS: Among the species analyzed, taurine was found to have the highest tissue concentrations across all compounds, with the heart containing the greatest amount. In guinea pigs, betaine levels were higher in the renal medulla than in the renal cortex (p < 0.01), while in rats and mice, there were no significant differences in betaine levels between the kidney cortex and medulla. The urine of guinea pigs had lower levels of sarcosine compared to rats (p < 0.001), while the plasma (p < 0.05; > 0.05), heart (p < 0.05; < 0.05), lungs (p < 0.01; < 0.01), liver (p < 0.001; < 0.05), and kidneys (p < 0.01; < 0.01) of rats exhibited notably higher concentrations of sarcosine compared to both mice and guinea pigs, respectively. CONCLUSIONS: There are pronounced differences in the concentrations of taurine, betaine, and other amino acids across the investigated species. It is important to acknowledge these differences when selecting animal models for preclinical studies and to account for variations in amino acid concentrations when selecting amino acids doses for interventional studies.


Subject(s)
Amino Acids , Body Fluids , Animals , Rats , Mice , Male , Guinea Pigs , Humans , Amino Acids/metabolism , Betaine/metabolism , Taurine/metabolism , Sarcosine , Alanine , Body Fluids/metabolism
5.
J Physiol ; 601(3): 469-481, 2023 02.
Article in English | MEDLINE | ID: mdl-36575638

ABSTRACT

Microvascular dysfunction predicts adverse cardiovascular events despite absence of large vessel disease. A shift in the mediator of flow-mediated dilatation (FMD) from nitric oxide (NO) to mitochondrial-derived hydrogen peroxide (H2 O2 ) occurs in arterioles from patients with coronary artery disease (CAD). The underlying mechanisms governing this shift are not completely defined. Lipid phosphate phosphatase 3 (LPP3) is a transmembrane protein that dephosphorylates lysophosphatidic acid, a bioactive lipid, causing a receptor-mediated increase in reactive oxygen species. A single nucleotide loss-of-function polymorphism in the gene coding for LPP3 (rs17114036) is associated with elevated risk for CAD, independent of traditional risk factors. LPP3 is suppressed by miR-92a, which is elevated in the circulation of patients with CAD. Repression of LPP3 increases vascular inflammation and atherosclerosis in animal models. We investigated the role of LPP3 and miR-92a as a mechanism for microvascular dysfunction in CAD. We hypothesized that modulation of LPP3 is critically involved in the disease-associated shift in mediator of FMD. LPP3 protein expression was reduced in left ventricle tissue from CAD relative to non-CAD patients (P = 0.004), with mRNA expression unchanged (P = 0.96). Reducing LPP3 expression (non-CAD) caused a shift from NO to H2 O2 (% maximal dilatation: Control 78.1 ± 11.4% vs. Peg-Cat 30.0 ± 11.2%; P < 0.0001). miR-92a is elevated in CAD arterioles (fold change: 1.9 ± 0.01 P = 0.04), while inhibition of miR-92a restored NO-mediated FMD (CAD), and enhancing miR-92a expression (non-CAD) elicited H2 O2 -mediated dilatation (P < 0.0001). Our data suggests LPP3 is crucial in the disease-associated switch in the mediator of FMD. KEY POINTS: Lipid phosphate phosphatase 3 (LPP3) expression is reduced in heart tissue patients with coronary artery disease (CAD). Loss of LPP3 in CAD is associated with an increase in the LPP3 inhibitor, miR-92a. Inhibition of LPP3 in the microvasculature of healthy patients mimics the CAD flow-mediated dilatation (FMD) phenotype. Inhibition of miR-92a restores nitric oxide-mediated FMD in the microvasculature of CAD patients.


Subject(s)
Coronary Artery Disease , MicroRNAs , Animals , Humans , Nitric Oxide , Arterioles/metabolism , Coronary Artery Disease/genetics , Dilatation , Cells, Cultured , MicroRNAs/genetics , MicroRNAs/metabolism , Vasodilation/physiology
6.
Nutrients ; 16(1)2023 Dec 21.
Article in English | MEDLINE | ID: mdl-38201862

ABSTRACT

BACKGROUND: Deoxycholic acid (DCA) is a secondary bile acid produced by gut bacteria. Elevated serum concentrations of DCA are observed in cardiovascular disease (CVD). We hypothesized that DCA might influence hemodynamic parameters in rats. METHODS: The concentration of DCA in systemic blood was measured with liquid chromatography coupled with mass spectrometry. Arterial blood pressure (BP), heart rate (HR) and echocardiographic parameters were evaluated in anesthetized, male, 3-4-month-old Sprague-Dawley rats administered intravenously (IV) or intracerebroventricularly (ICV) with investigated compounds. Mesenteric artery (MA) reactivity was tested ex vivo. RESULTS: The baseline plasma concentration of DCA was 0.24 ± 0.03 mg/L. The oral antibiotic treatment produced a large decrease in the concentration. Administered IV, the compound increased BP and HR in a dose-dependent manner. DCA also increased heart contractility and cardiac output. None of the tested compounds-prazosin (an alpha-blocker), propranolol (beta-adrenolytic), atropine (muscarinic receptor antagonist), glibenclamide (K-ATP inhibitor) or DY 268 (FXR antagonist), glycyrrhetinic acid (11HSD2 inhibitor)-significantly diminished the DCA-induced pressor effect. ICV infusion did not exert significant HR or BP changes. DCA relaxed MAs. Systemic vascular resistance did not change significantly. CONCLUSIONS: DCA elevates BP primarily by augmenting cardiac output. As a metabolite derived from gut bacteria, DCA potentially serves as a mediator in the interaction between the gut microbiota and the host's circulatory system.


Subject(s)
Bile Acids and Salts , Deoxycholic Acid , Male , Rats , Animals , Blood Pressure , Rats, Sprague-Dawley , Cardiac Output , Deoxycholic Acid/pharmacology
7.
Int J Mol Sci ; 23(11)2022 May 27.
Article in English | MEDLINE | ID: mdl-35682739

ABSTRACT

Evidence suggests that microbiota-derived metabolites, including short-chain fatty acids (SCFAs) and trimethylamine-oxide (TMAO), affect the course of diabetic multiorgan pathology. We hypothesized that diabetes activates the intestinal renin-angiotensin system (RAS), contributing to gut pathology. Twelve-week-old male rats were divided into three groups: controls, diabetic (streptozotocin-induced) and diabetic treated with enalapril. Histological examination and RT-qPCR were performed to evaluate morphology and RAS expression in the jejunum and the colon. SCFA and TMAO concentrations in stools, portal and systemic blood were evaluated. In comparison to the controls, the diabetic rats showed hyperplastic changes in jejunal and colonic mucosa, increased plasma SCFA, and slightly increased plasma TMAO. The size of the changes was smaller in enalapril-treated rats. Diabetic rats had a lower expression of Mas receptor (MasR) and angiotensinogen in the jejunum whereas, in the colon, the expression of MasR and renin was greater in diabetic rats. Enalapril-treated rats had a lower expression of MasR in the colon. The expression of AT1a, AT1b, and AT2 receptors was similar between groups. In conclusion, diabetes produces morphological changes in the intestines, increases plasma SCFA, and alters the expression of renin and MasR. These alterations were reduced in enalapril-treated rats. Future studies need to evaluate the clinical significance of intestinal pathology in diabetes.


Subject(s)
Diabetes Mellitus, Experimental , Renin-Angiotensin System , Animals , Diabetes Mellitus, Experimental/drug therapy , Enalapril/metabolism , Enalapril/pharmacology , Male , Rats , Renin/metabolism , Streptozocin
8.
Am J Physiol Regul Integr Comp Physiol ; 321(6): R969-R981, 2021 12 01.
Article in English | MEDLINE | ID: mdl-34755563

ABSTRACT

Recent evidence suggests that gut bacteria-derived metabolites interact with the cardiovascular system and alter blood pressure (BP) in mammals. Here, we evaluated the effect of indole-3-propionic acid (IPA), a gut bacteria-derived metabolite of tryptophan, on the circulatory system. Arterial BP, electrocardiographic, and echocardiographic (ECHO) parameters were recorded in male, anesthetized, 12-wk-old Wistar-Kyoto rats at baseline and after intravenous administration of either IPA or vehicle. In additional experiments, rats were pretreated with prazosin or pentolinium to evaluate the involvement of the autonomic nervous system in cardiovascular responses to IPA. IPA's concentrations were measured using ultra-high performance liquid chromatography tandem mass spectrometry. The reactivity of endothelium-intact and -denuded mesenteric resistance arteries was tested. Cells' viability and lactate dehydrogenase (LDH) cytotoxicity assays were performed on cultured cardiomyocytes. IPA increased BP with a concomitant bradycardic response but no significant change in QTc interval. The pretreatment with prazosin and pentolinium reduced the hypertensive response. ECHO showed increased contractility of the heart after the administration of IPA. Ex vivo, IPA constricted predilated and endothelium-denuded mesenteric resistance arteries and increased metabolic activity of cardiomyocytes. IPA increases BP via cardiac and vascular mechanisms in rats. Furthermore, IPA increases cardiac contractility and metabolic activity of cardiomyocytes. Our study suggests that IPA may act as a mediator between gut microbiota and the circulatory system.


Subject(s)
Arterial Pressure/drug effects , Bacteria/metabolism , Energy Metabolism/drug effects , Gastrointestinal Microbiome , Hypertension/chemically induced , Indoles/toxicity , Mesenteric Arteries/drug effects , Myocytes, Cardiac/drug effects , Animals , Autonomic Nervous System/drug effects , Autonomic Nervous System/physiopathology , Bradycardia/chemically induced , Bradycardia/physiopathology , Cells, Cultured , Heart Rate/drug effects , Humans , Hypertension/physiopathology , Indoles/administration & dosage , Indoles/metabolism , Infusions, Intravenous , Male , Mesenteric Arteries/physiopathology , Myocardial Contraction/drug effects , Myocytes, Cardiac/metabolism , Rats, Inbred WKY
9.
Arterioscler Thromb Vasc Biol ; 41(1): 446-457, 2021 01.
Article in English | MEDLINE | ID: mdl-33232201

ABSTRACT

OBJECTIVE: Coronary artery disease (CAD) is associated with a compensatory switch in mechanism of flow-mediated dilation (FMD) from nitric oxide (NO) to H2O2. The underlying mechanism responsible for the pathological shift is not well understood, and recent reports directly implicate telomerase and indirectly support a role for autophagy. We hypothesize that autophagy is critical for shear stress-induced release of NO and is a crucial component of for the pathway by which telomerase regulates FMD. Approach and Results: Human left ventricular, atrial, and adipose resistance arterioles were collected for videomicroscopy and immunoblotting. FMD and autophagic flux were measured in arterioles treated with autophagy modulators alone, and in tandem with telomerase-activity modulators. LC3B II/I was higher in left ventricular tissue from patients with CAD compared with non-CAD (2.8±0.2 versus 1.0±0.2-fold change; P<0.05), although p62 was similar between groups. Shear stress increased Lysotracker fluorescence in non-CAD arterioles, with no effect in CAD arterioles. Inhibition of autophagy in non-CAD arterioles induced a switch from NO to H2O2, while activation of autophagy restored NO-mediated vasodilation in CAD arterioles. In the presence of an autophagy activator, telomerase inhibitor prevented the expected switch (Control: 82±4%; NG-Nitro-l-arginine methyl ester: 36±5%; polyethylene glycol catalase: 80±3). Telomerase activation was unable to restore NO-mediated FMD in the presence of autophagy inhibition in CAD arterioles (control: 72±7%; NG-Nitro-l-arginine methyl ester: 79±7%; polyethylene glycol catalase: 38±9%). CONCLUSIONS: We provide novel evidence that autophagy is responsible for the pathological switch in dilator mechanism in CAD arterioles, demonstrating that autophagy acts downstream of telomerase as a common denominator in determining the mechanism of FMD.


Subject(s)
Adipose Tissue/blood supply , Arterioles/enzymology , Autophagy , Coronary Artery Disease/enzymology , Coronary Vessels/enzymology , Telomerase/metabolism , Vasodilation , Adult , Aged , Arterioles/pathology , Arterioles/physiopathology , Case-Control Studies , Coronary Artery Disease/pathology , Coronary Artery Disease/physiopathology , Coronary Vessels/pathology , Coronary Vessels/physiopathology , Female , Humans , Hydrogen Peroxide/metabolism , Lysosomes/enzymology , Lysosomes/pathology , Male , Microtubule-Associated Proteins/metabolism , Middle Aged , Nitric Oxide/metabolism , Signal Transduction
10.
Int J Mol Sci ; 21(17)2020 Aug 26.
Article in English | MEDLINE | ID: mdl-32859047

ABSTRACT

Trimethylamine (TMA) is a gut bacteria product oxidized by the liver to trimethylamine-N-oxide (TMAO). Clinical evidence suggests that cardiovascular disease is associated with increased plasma TMAO. However, little headway has been made in understanding this relationship on a mechanistic and molecular level. We investigated the mechanisms affecting plasma levels of TMAO in Spontaneously Hypertensive Heart Failure (SHHF) rats. Healthy Wistar Kyoto (WKY) and SHHF rats underwent metabolic, hemodynamic, histopathological and biochemical measurements, including tight junction proteins analysis. Stool, plasma and urine samples were evaluated for TMA and TMAO using ultra performance liquid chromatography-mass spectrometry. SHHF presented disturbances of the gut-blood barrier including reduced intestinal blood flow, decreased thickness of the colonic mucosa and alterations in tight junctions, such as claudin 1 and 3, and zonula occludens-1. This was associated with significantly higher plasma levels of TMA and TMAO and increased gut-to-blood penetration of TMA in SHHF compared to WKY. There was no difference in kidney function or liver oxidation of TMA to TMAO between WKY and SHHF. In conclusion, increased plasma TMAO in heart failure rats results from a perturbed gut-blood barrier and increased gut-to-blood passage of TMAO precursor, i.e., TMA. Increased gut-to-blood penetration of bacterial metabolites may be a marker and a mediator of cardiovascular pathology.


Subject(s)
Bacteria/chemistry , Heart Failure/microbiology , Methylamines/blood , Animals , Chromatography, High Pressure Liquid , Feces/chemistry , Feces/microbiology , Gastrointestinal Microbiome , Heart Failure/blood , Heart Failure/etiology , Heart Failure/urine , Male , Mass Spectrometry , Methylamines/urine , Rats , Rats, Inbred SHR , Rats, Inbred WKY
11.
Am J Physiol Heart Circ Physiol ; 318(5): H1185-H1197, 2020 05 01.
Article in English | MEDLINE | ID: mdl-32243770

ABSTRACT

The primary function of the arterial microvasculature is to ensure that regional perfusion of blood flow is matched to the needs of the tissue bed. This critical physiological mechanism is tightly controlled and regulated by a variety of vasoactive compounds that are generated and released from the vascular endothelium. Although these substances are required for modulating vascular tone, they also influence the surrounding tissue and have an overall effect on vascular, as well as parenchymal, homeostasis. Bioactive lipids, fatty acid derivatives that exert their effects through signaling pathways, are included in the list of vasoactive compounds that modulate the microvasculature. Although lipids were identified as important vascular messengers over three decades ago, their specific role within the microvascular system is not well defined. Thorough understanding of these pathways and their regulation is not only essential to gain insight into their role in cardiovascular disease but is also important for preventing vascular dysfunction following cancer treatment, a rapidly growing problem in medical oncology. The purpose of this review is to discuss how biologically active lipids, specifically prostanoids, epoxyeicosatrienoic acids, sphingolipids, and lysophospholipids, contribute to vascular function and signaling within the endothelium. Methods for quantifying lipids will be briefly discussed, followed by an overview of the various lipid families. The cross talk in signaling between classes of lipids will be discussed in the context of vascular disease. Finally, the potential clinical implications of these lipid families will be highlighted.


Subject(s)
Fatty Acids/metabolism , Microvessels/metabolism , Phospholipids/metabolism , Sphingolipids/metabolism , Animals , Enzyme Assays/methods , Fluorometry/methods , Humans , Mass Spectrometry/methods , Signal Transduction
12.
Br J Pharmacol ; 175(22): 4266-4280, 2018 11.
Article in English | MEDLINE | ID: mdl-30153326

ABSTRACT

BACKGROUND AND PURPOSE: NO produces arteriolar flow-induced dilation (FID) in healthy subjects but is replaced by mitochondria-derived hydrogen peroxide (mtH2 O2 ) in patients with coronary artery disease (CAD). Lysophosphatidic acid (LPA) is elevated in patients with risk factors for CAD, but its functional effect in arterioles is unknown. We tested whether elevated LPA changes the mediator of FID from NO to mtH2 O2 in human visceral and subcutaneous adipose arterioles. EXPERIMENTAL APPROACH: Arterioles were cannulated on glass micropipettes and pressurized to 60 mmHg. We recorded lumen diameter after graded increases in flow in the presence of either NOS inhibition (L-NAME) or H2 O2 scavenging (Peg-Cat) ± LPA (10 µM, 30 min), ±LPA1 /LPA3 receptor antagonist (Ki16425) or LPA2 receptor antagonist (H2L5186303). We analysed LPA receptor RNA and protein levels in human arterioles and human cultured endothelial cells. KEY RESULTS: FID was inhibited by L-NAME but not Peg-Cat in untreated vessels. In vessels treated with LPA, FID was of similar magnitude but inhibited by Peg-Cat while L-NAME had no effect. Rotenone attenuated FID in vessels treated with LPA indicating mitochondria as a source of ROS. RNA transcripts from LPA1 and LPA2 but not LPA3 receptors were detected in arterioles. LPA1 but not LPA3 receptor protein was detected by Western blot. Pretreatment of vessels with an LPA1 /LPA3 , but not LPA2 , receptor antagonist prior to LPA preserved NO-mediated dilation. CONCLUSIONS AND IMPLICATIONS: These findings suggest an LPA1 receptor-dependent pathway by which LPA increases arteriolar release of mtH2 O2 as a mediator of FMD.


Subject(s)
Adipose Tissue/drug effects , Arterioles/drug effects , Hydrogen Peroxide/metabolism , Lysophospholipids/pharmacology , Receptors, Lysophosphatidic Acid/metabolism , Adipose Tissue/metabolism , Aged , Arterioles/metabolism , Cells, Cultured , Dilatation , Female , Humans , Hydrogen Peroxide/analysis , Male , Middle Aged , Mitochondria/drug effects , Mitochondria/metabolism
13.
Microcirculation ; 25(1)2018 01.
Article in English | MEDLINE | ID: mdl-29161755

ABSTRACT

OBJECTIVES: KV channels are important regulators of vascular tone, but the identity of specific KV channels involved and their regulation in disease remain less well understood. We determined the expression of KV 1 channel subunits and their role in cAMP-mediated dilation in coronary resistance arteries from subjects with and without CAD. METHODS: HCAs from patients with and without CAD were assessed for mRNA and protein expression of KV 1 channel subunits with molecular techniques and for vasodilator response with isolated arterial myography. RESULTS: Assays of mRNA transcripts, membrane protein expression, and vascular cell-specific localization revealed abundant expression of KV 1.5 in vascular smooth muscle cells of non-CAD HCAs. Isoproterenol and forskolin, two distinct cAMP-mediated vasodilators, induced potent dilation of non-CAD arterioles, which was inhibited by both the general KV blocker 4-AP and the selective KV 1.5 blocker DPO-1. The cAMP-mediated dilation was reduced in CAD and was accompanied by a loss of or reduced contribution of 4-AP-sensitive KV channels. CONCLUSIONS: KV 1.5, as a major 4-AP-sensitive KV 1 channel expressed in coronary VSMCs, mediates cAMP-mediated dilation in non-CAD arterioles. The cAMP-mediated dilation is reduced in CAD coronary arterioles, which is associated with impaired 4-AP-sensitive KV channel function.


Subject(s)
Coronary Vessels/chemistry , Potassium Channels, Voltage-Gated/metabolism , Vasodilation/drug effects , Arterioles/physiology , Cardiovascular Diseases/etiology , Case-Control Studies , Cyclic AMP/physiology , Humans , Protein Subunits , RNA, Messenger/analysis
14.
Hypertension ; 70(1): 166-173, 2017 07.
Article in English | MEDLINE | ID: mdl-28533333

ABSTRACT

Blood flow through healthy human vessels releases NO to produce vasodilation, whereas in patients with coronary artery disease (CAD), the mediator of dilation transitions to mitochondria-derived hydrogen peroxide (mtH2O2). Excessive mtH2O2 production contributes to a proatherosclerotic vascular milieu. Loss of PGC-1α (peroxisome proliferator-activated receptor γ coactivator 1α) is implicated in the pathogenesis of CAD. We hypothesized that PGC-1α suppresses mtH2O2 production to reestablish NO-mediated dilation in isolated vessels from patients with CAD. Isolated human adipose arterioles were cannulated, and changes in lumen diameter in response to graded increases in flow were recorded in the presence of PEG (polyethylene glycol)-catalase (H2O2 scavenger) or L-NAME (NG-nitro-l-arginine methyl ester; NOS inhibitor). In contrast to the exclusively NO- or H2O2-mediated dilation seen in either non-CAD or CAD conditions, respectively, flow-mediated dilation in CAD vessels was sensitive to both L-NAME and PEG-catalase after PGC-1α upregulation using ZLN005 and α-lipoic acid. PGC-1α overexpression in CAD vessels protected against the vascular dysfunction induced by an acute increase in intraluminal pressure. In contrast, downregulation of PGC-1α in non-CAD vessels produces a CAD-like phenotype characterized by mtH2O2-mediated dilation (no contribution of NO). Loss of PGC-1α may contribute to the shift toward the mtH2O2-mediated dilation observed in vessels from subjects with CAD. Strategies to boost PGC-1α levels may provide a therapeutic option in patients with CAD by shifting away from mtH2O2-mediated dilation, increasing NO bioavailability, and reducing levels of mtH2O2 Furthermore, increased expression of PGC-1α allows for simultaneous contributions of both NO and H2O2 to flow-mediated dilation.


Subject(s)
Coronary Artery Disease , Hydrogen Peroxide , Nitric Oxide/metabolism , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha , Vasodilation/physiology , Biological Availability , Catalase/metabolism , Coronary Artery Disease/metabolism , Coronary Artery Disease/physiopathology , Coronary Vessels/physiopathology , Humans , Hydrogen Peroxide/metabolism , Hydrogen Peroxide/pharmacology , Microcirculation/physiology , Models, Biological , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/metabolism , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/pharmacology , Polyethylene Glycols/metabolism , Statistics as Topic , Vasodilator Agents/metabolism , Vasodilator Agents/pharmacology
16.
Circ Res ; 120(4): 658-669, 2017 Feb 17.
Article in English | MEDLINE | ID: mdl-27872049

ABSTRACT

RATIONALE: Hydrogen peroxide (H2O2) regulates vascular tone in the human microcirculation under physiological and pathophysiological conditions. It dilates arterioles by activating large-conductance Ca2+-activated K+ channels in subjects with coronary artery disease (CAD), but its mechanisms of action in subjects without CAD (non-CAD) when compared with those with CAD remain unknown. OBJECTIVE: We hypothesize that H2O2-elicited dilation involves different K+ channels in non-CAD versus CAD, resulting in an altered capacity for vasodilation during disease. METHODS AND RESULTS: H2O2 induced endothelium-independent vasodilation in non-CAD adipose arterioles, which was reduced by paxilline, a large-conductance Ca2+-activated K+ channel blocker, and by 4-aminopyridine, a voltage-gated K+ (KV) channel blocker. Assays of mRNA transcripts, protein expression, and subcellular localization revealed that KV1.5 is the major KV1 channel expressed in vascular smooth muscle cells and is abundantly localized on the plasma membrane. The selective KV1.5 blocker diphenylphosphine oxide-1 and the KV1.3/1.5 blocker 5-(4-phenylbutoxy)psoralen reduced H2O2-elicited dilation to a similar extent as 4-aminopyridine, but the selective KV1.3 blocker phenoxyalkoxypsoralen-1 was without effect. In arterioles from CAD subjects, H2O2-induced dilation was significantly reduced, and this dilation was inhibited by paxilline but not by 4-aminopyridine, diphenylphosphine oxide-1, or 5-(4-phenylbutoxy)psoralen. KV1.5 cell membrane localization and diphenylphosphine oxide-1-sensitive K+ currents were markedly reduced in isolated vascular smooth muscle cells from CAD arterioles, although mRNA or total cellular protein expression was largely unchanged. CONCLUSIONS: In human arterioles, H2O2-induced dilation is impaired in CAD, which is associated with a transition from a combined large-conductance Ca2+-activated K+- and KV (KV1.5)-mediated vasodilation toward a large-conductance Ca2+-activated K+-predominant mechanism of dilation. Loss of KV1.5 vasomotor function may play an important role in microvascular dysfunction in CAD or other vascular diseases.


Subject(s)
Arterioles/physiology , Coronary Artery Disease/physiopathology , Hydrogen Peroxide/pharmacology , Kv1.5 Potassium Channel/physiology , Vasodilation/physiology , Adult , Aged , Arterioles/drug effects , Arterioles/pathology , Cells, Cultured , Coronary Artery Disease/pathology , Coronary Vessels/drug effects , Coronary Vessels/pathology , Coronary Vessels/physiology , Female , HEK293 Cells , Humans , Kv1.5 Potassium Channel/antagonists & inhibitors , Male , Middle Aged , Muscle, Smooth, Vascular/cytology , Muscle, Smooth, Vascular/drug effects , Muscle, Smooth, Vascular/physiology , Vasodilation/drug effects
17.
Arterioscler Thromb Vasc Biol ; 36(8): 1467-74, 2016 08.
Article in English | MEDLINE | ID: mdl-27312223

ABSTRACT

Mitochondrial dysfunction results in high levels of oxidative stress and mitochondrial damage, leading to disruption of endothelial homeostasis. Recent discoveries have clarified several pathways, whereby mitochondrial dysregulation contributes to endothelial dysfunction and vascular disease burden. One such pathway centers around peroxisome proliferator receptor-γ coactivator 1α (PGC-1α), a transcriptional coactivator linked to mitochondrial biogenesis and antioxidant defense, among other functions. Although primarily investigated for its therapeutic potential in obesity and skeletal muscle differentiation, the ability of PGC-1α to alter a multitude of cellular functions has sparked interest in its role in the vasculature. Within this context, recent studies demonstrate that PGC-1α plays a key role in endothelial cell and smooth muscle cell regulation through effects on oxidative stress, apoptosis, inflammation, and cell proliferation. The ability of PGC-1α to affect these parameters is relevant to vascular disease progression, particularly in relation to atherosclerosis. Upregulation of PGC-1α can prevent the development of, and even encourage regression of, atherosclerotic lesions. Therefore, PGC-1α is poised to serve as a promising target in vascular disease. This review details recent findings related to PGC-1α in vascular regulation, regulation of PGC-1α itself, the role of PGC-1α in atherosclerosis, and therapies that target this key protein.


Subject(s)
Atherosclerosis/metabolism , Atherosclerosis/pathology , Endothelial Cells/metabolism , Endothelium, Vascular/metabolism , Muscle, Smooth, Vascular/metabolism , Myocytes, Smooth Muscle/metabolism , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/metabolism , Animals , Apoptosis , Atherosclerosis/genetics , Atherosclerosis/therapy , Cell Proliferation , Endothelial Cells/pathology , Endothelium, Vascular/pathology , Gene Expression Regulation , Humans , Inflammation/metabolism , Inflammation/pathology , Mitochondria, Muscle/metabolism , Mitochondria, Muscle/pathology , Muscle, Smooth, Vascular/pathology , Myocytes, Smooth Muscle/pathology , Oxidative Stress , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/genetics , Plaque, Atherosclerotic , Signal Transduction
18.
Circ Res ; 118(1): 157-72, 2016 Jan 08.
Article in English | MEDLINE | ID: mdl-26837746

ABSTRACT

The microcirculation is responsible for orchestrating adjustments in vascular tone to match local tissue perfusion with oxygen demand. Beyond this metabolic dilation, the microvasculature plays a critical role in modulating vascular tone by endothelial release of an unusually diverse family of compounds including nitric oxide, other reactive oxygen species, and arachidonic acid metabolites. Animal models have provided excellent insight into mechanisms of vasoregulation in health and disease. However, there are unique aspects of the human microcirculation that serve as the focus of this review. The concept is put forth that vasculoparenchymal communication is multimodal, with vascular release of nitric oxide eliciting dilation and preserving normal parenchymal function by inhibiting inflammation and proliferation. Likewise, in disease or stress, endothelial release of reactive oxygen species mediates both dilation and parenchymal inflammation leading to cellular dysfunction, thrombosis, and fibrosis. Some pathways responsible for this stress-induced shift in mediator of vasodilation are proposed. This paradigm may help explain why microvascular dysfunction is such a powerful predictor of cardiovascular events and help identify new approaches to treatment and prevention.


Subject(s)
Endothelium, Vascular/physiology , Microcirculation/physiology , Vasodilation/physiology , Animals , Blood Circulation/physiology , Cardiovascular Diseases/diagnosis , Cardiovascular Diseases/physiopathology , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...