Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 28
Filter
Add more filters










Publication year range
1.
J Phys Chem B ; 128(4): 1091-1097, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38253517

ABSTRACT

Water is used as the main solvent in model systems containing bioorganic molecules. Choosing the right water model is an important step in the study of the biophysical and biochemical processes that occur in cells. In the present work, we perform molecular dynamics simulations using two distinct force fields for water: the rigid model TIP4P/2005, where only intermolecular interactions are considered, and the flexible model SPC/Fw, where intramolecular interactions are also taken into account. The simulations aim to determine the effect of the inclusion of intramolecular interactions on the accuracy of calculated properties of bulk water (density and thermal expansion coefficient, self-diffusion coefficients, shear viscosity, radial distribution functions, and dielectric constant), as compared to experimental results, over a temperature range between 250 and 370 K. We find that the results of the rigid model present the smallest deviations relative to experiments for most of the calculated quantities, except for the shear viscosity of supercooled water and the water dielectric constant, where the flexible model presents better agreement with experiments.

2.
Nanotechnology ; 35(7)2023 Dec 08.
Article in English | MEDLINE | ID: mdl-37820632

ABSTRACT

In this study, we explore the potential of functionalized two-dimensional (2D) diamond for spin-dependent electronic devices using first-principles calculations. Specifically, we investigate functionalizations with either hydroxyl (-OH) or fluorine (-F) groups. In the case of an isolated layer, we observe that the quantity and distribution of (-OH) or (-F) on the 2D diamond surface significantly influence thesp2/sp3ratio of the carbon atoms in the layer. As the coverage is reduced, both the band gap and magnetic moment decrease. When the 2D diamond is placed between gold contacts and functionalized with (-OH), it results in a device with lower resistance compared to the (-F) functionalization. We predict that the maximum current achieved in the device increases with decreasing (-OH) surface coverage, while the opposite behavior occurs for (-F). Additionally, the surface coverage alone can alter the direction of current rectification in (-F) functionalized 2D diamonds. For all studied systems, a single spin component contributes to the total current for certain values of applied bias, indicating a spin filter behavior.

3.
J Phys Chem B ; 127(40): 8634-8643, 2023 Oct 12.
Article in English | MEDLINE | ID: mdl-37754781

ABSTRACT

In this study, using nonequilibrium molecular dynamics simulation, the flow of water in deformed carbon nanotubes is studied for two water models TIP4P/2005 and simple point charge/FH (SPC/FH). The results demonstrated a nonuniform dependence of the flow on the tube deformation and the flexibility imposed on the water molecules, leading to an unexpected increase in the flow in some cases. The effects of the tube diameter and pressure gradient are investigated to explain the abnormal flow behavior with different degrees of structural deformation.

4.
ACS Omega ; 7(11): 9388-9396, 2022 Mar 22.
Article in English | MEDLINE | ID: mdl-35356695

ABSTRACT

Molybdenum disulfide (MoS2) is attractive for use in next-generation nanoelectronic devices and exhibits great potential for humidity sensing applications. Herein, MoS2 ink was successfully prepared via a simple exfoliation method by sonication. The structural and surface morphology of a deposited ink film was analyzed by scanning electron microscopy (SEM), Raman spectroscopy, and atomic force microscopy (AFM). The aerosol-printed MoS2 ink sensor has high sensitivity, with a conductivity increase by 6 orders of magnitude upon relative humidity increase from 10 to 95% at room temperature. The sensor also has fast response/recovery times and excellent repeatability. Possible mechanisms for the water-induced conductivity increase are discussed. An analytical model that encompasses two ionic conduction regimes, with a percolation transition to an insulating state below a low humidity threshold, describes the sensor response successfully. In conclusion, our work provides a low-cost and straightforward strategy for fabricating a high-performance humidity sensor and fundamental insights into the sensing mechanism.

5.
J Phys Condens Matter ; 33(12): 125401, 2021 Jan 13.
Article in English | MEDLINE | ID: mdl-33438584

ABSTRACT

We investigate theoretically, through of first-principles calculations, the effect of the application of large in-plane uniaxial stress on single-layer of MoS2, MoSe2, and MoSSe alloys. For stress applied along the zigzag (zz) direction, we predict an anomalous behavior near the point fracture. This behavior is characterized by the reorientation of the MoS2 structure along the applied stress from zz to armchair due to the formation of transient square-lattice regions in the crystal, with an apparent crystal rotation of 30 degrees. After reorientation, a large plastic deformation [Formula: see text] remains after the stress is removed. This behavior is also observed in MoSe2 and in MoSSe alloys. This phenomenon is observed both in stress-constrained geometry optimizations and in ab initio molecular dynamics simulations at finite temperature and applied stress.

6.
Article in English | MEDLINE | ID: mdl-33352540

ABSTRACT

We investigate theoretically, through of first-principles calculations, the effect of the application of large in-plane uniaxial stress on single-layer of MoS2, MoSe2, and MoSSe alloys. For stress applied along the zigzag direction, we predict an anomalous behavior near the point fracture. This behavior is characterized by the reorientation of the MoS2structure along the applied stress from zigzag to armchair due to the formation of transient square-lattice regions in the crystal, with an apparent (although not real) crystal rotation of 30 degrees. After reorientation, a large plastic deformation √3-1 remains after the stress is removed. This behavior is also observed in MoSe2and in MoSSe alloys. This phenomenon is observed both in stress-constrained geometry optimizations and in ab initio molecular dynamics simulations at finite temperature and applied stress.

7.
Beilstein J Nanotechnol ; 11: 1801-1808, 2020.
Article in English | MEDLINE | ID: mdl-33335824

ABSTRACT

Folds naturally appear on nanometrically thin materials, also called "2D materials", after exfoliation, eventually creating folded edges across the resulting flakes. We investigate the adhesion and flexural properties of single-layered and multilayered 2D materials upon folding in the present work. This is accomplished by measuring and modeling mechanical properties of folded edges, which allows for the experimental determination of the bending stiffness (κ) of multilayered 2D materials as a function of the number of layers (n). In the case of talc, we obtain κ ∝ n 3 for n ≥ 5, indicating no interlayer sliding upon folding, at least in this thickness range. In contrast, tip-enhanced Raman spectroscopy measurements on edges in folded graphene flakes, 14 layers thick, show no significant strain. This indicates that layers in graphene flakes, up to 5 nm thick, can still slip to relieve stress, showing the richness of the effect in 2D systems. The obtained interlayer adhesion energy for graphene (0.25 N/m) and talc (0.62 N/m) is in good agreement with recent experimental results and theoretical predictions. The obtained value for the adhesion energy of graphene on a silicon substrate is also in agreement with previous results.

8.
J Phys Condens Matter ; 31(43): 435502, 2019 Oct 30.
Article in English | MEDLINE | ID: mdl-31307028

ABSTRACT

We report a theoretical investigation of magnetic, electronic, and topological properties of Hg1-x Mn x Te alloys. We consider periodic structures with Mn concentrations as x = 0, 0.25, 0.5, 0.75, and 1. Our hybrid DFT/Hartree-Fock calculations for the bandgaps of antiferromagnetic (ground-state) phases are in good agreement with experiments. The calculations also show that the modification of the magnetic ordering from anti- to ferromagnetic leads to a significant bandgap reduction, resulting in a metal/insulator transition at higher Mn concentrations. We show that a ferromagnetic Weyl semimetal phase is achieved for x = 0.25, where a single pair of Weyl nodes mirrored by the [Formula: see text] point in the momentum space is observed. The non-trivial topological property of the ferromagnetic Hg0.75Mn0.25Te is confirmed by the calculation of the chirality of each Weyl node, which are connected by a surface Fermi arc of a semi infinite Hg0.75Mn0.25Te.

9.
ACS Nano ; 12(6): 5866-5872, 2018 Jun 26.
Article in English | MEDLINE | ID: mdl-29787237

ABSTRACT

The ability to create materials with improved properties upon transformation processes applied to conventional materials is the keystone of materials science. Here, hexagonal boron nitride (h-BN), a large-band-gap insulator, is transformed into a conductive two-dimensional (2D) material- bonitrol-that is stable at ambient conditions. The process, which requires compression of at least two h-BN layers and hydroxyl ions, is characterized via scanning probe microscopy experiments and ab initio calculations. This material and its creation mechanism represent an additional strategy for the transformation of known 2D materials into artificial advanced materials with exceptional properties.

10.
ACS Nano ; 12(5): 4312-4320, 2018 05 22.
Article in English | MEDLINE | ID: mdl-29694776

ABSTRACT

Graphene is regarded as the toughest two-dimensional material (highest in-plane elastic properties) and, as a consequence, it has been employed/proposed as an ultrathin membrane in a myriad of microfluidic devices. Yet, an experimental investigation of eventual variations on the apparent elastic properties of a suspended graphene membrane in contact with air or water is still missing. In this work, the mechanical response of suspended monolayer graphene membranes on a microfluidic platform is investigated via scanning probe microscopy experiments. A high elastic modulus is measured for the membrane when the platform is filled with air, as expected. However, a significant apparent softening of graphene is observed when water fills the microfluidic system. Through molecular dynamics simulations and a phenomenological model, we associate such softening to a water-induced uncrumpling process of the suspended graphene membrane. This result may bring substantial modifications on the design and operation of microfluidic devices which exploit pressure application on graphene membranes.

11.
Nanotechnology ; 29(9): 095704, 2018 Mar 02.
Article in English | MEDLINE | ID: mdl-29300171

ABSTRACT

In the present work, we use atomic force microscopy nanomanipulation of 2D-material standing folds to investigate their mechanical deformation. Using graphene, h-BN and talc nanoscale wrinkles as testbeds, universal force-strain pathways are clearly uncovered and well-accounted for by an analytical model. Such universality further enables the investigation of each fold bending stiffness κ as a function of its characteristic height h 0. We observe a more than tenfold increase of κ as h 0 increases in the 10-100 nm range, with power-law behaviors of κ versus h 0 with exponents larger than unity for the three materials. This implies anomalous scaling of the mechanical responses of nano-objects made from these materials.

12.
J Phys Condens Matter ; 29(46): 465502, 2017 11 22.
Article in English | MEDLINE | ID: mdl-29053472

ABSTRACT

In the present work we predict, through first-principles calculations, that bilayers of the recently synthesized Ni3 [Formula: see text] [Formula: see text] and Pt3 [Formula: see text] [Formula: see text] layered materials are topological insulators upon electron doping, and that their topological insulator properties can be modulated by the application of electric fields with magnitudes achievable in devices. The electronic structures of both bilayers are characterized by spin-orbit split graphene-like bands, with gap magnitudes that are three orders of magnitude larger than graphene's. In ribbon geometries, chiral edge modes develop at each side with band dispersions similar to that of Kane-Mele graphene model. Surprisingly, the edge states' spin-propagation locking occurs even for very thin ribbons. We also find that the response of the electronic structure of both materials to applied electric fields are similar to both graphene and the Kane-Mele model with a Rashba term. All these findings indicate that these bilayer systems can be considered as large-spin-orbit graphene analogues with a strong sensitivity to applied electric fields.

13.
J Phys Condens Matter ; 29(9): 09LT01, 2017 Mar 08.
Article in English | MEDLINE | ID: mdl-28114122

ABSTRACT

We investigate, through first-principles calculations, the electronic band structure-including the spin-orbit coupling-of single-layer M3(THT)2 metal-organic frameworks, where M = Ni, Pt, Cu and Au, and THT is the 1,2,5,6,9,10-triphenylenehexathiol molecule. This MOF family contains, in its electronic structure, spin-orbit gaps that could allow their use in quantum spin Hall effect devices. We find that the partial inclusion of exact exchange in the calculations (beyond a semi-local exchange-correlation level) leads to quantitative, and even qualitative, modifications of the electronic structure of Ni3(THT)2 and Pt3(THT)2 relative to calculations at semi-local exchange-correlation level: upon inclusion of exact exchange, the predicted fundamental band gap of these semiconductor materials increases to more than twice, and the predicted spin-orbit gaps change by as much as 44%. Even the qualitative description of the valence bands of these materials changes upon inclusion of exact exchange. We also find that the magnitudes of the spin-orbit gaps are not monotonic with the atomic number of the metal atom.

14.
Nanotechnology ; 26(47): 475702, 2015 Nov 27.
Article in English | MEDLINE | ID: mdl-26535912

ABSTRACT

In this paper, we address the challenge of identifying grain boundaries on the molybdenum disulphide (MoS2) surface at the nanometre scale using a simple self-assembled monolayer (SAM) decoration method. Combined with atomic force microscopy, octadecylphosphonic acid monolayers readily reveal grain boundaries in MoS2 at ambient conditions, without the need of atomic resolution measurements under vacuum. Additional ab initio calculations allow us to obtain the preferred orientation of the SAM structure relative to the MoS2 beneath, and therefore, together with the experiments, the MoS2 crystalline orientations at the grain boundaries. The proposed method enables the visualization of grain boundaries with sub-micrometer resolution for nanodevice investigation and failure analysis.

15.
Nano Lett ; 15(9): 5899-904, 2015 Sep 09.
Article in English | MEDLINE | ID: mdl-26226057

ABSTRACT

This work addresses the problem of how a nano-object adheres to a supporting media. The case of study are the serpentine-like structures of single-wall carbon nanotubes (SWNTs) grown on vicinal crystalline quartz. We develop in situ nanomanipulation and confocal Raman spectroscopy in such systems, and to explain the results, we propose a dynamical equation in which static friction is treated phenomenologically and implemented as cutoff for velocities, via Heaviside step function and an adhesion force tensor. We demonstrate that the strain profiles observed along the SWNTs are due to anisotropic adhesion, adhesion discontinuities, strain avalanches, and memory effects. The equation is general enough to make predictions for various one- and two-dimensional nanosystems adhered to a supporting media.

16.
Nanotechnology ; 26(4): 045707, 2015 Jan 30.
Article in English | MEDLINE | ID: mdl-25566691

ABSTRACT

We investigate-through simulations and analytical calculations-the consequences of uniaxial lateral compression applied to the upper layer of multilayer graphene. The simulations of compressed graphene show that strains larger than 2.8% induce soliton-like deformations that further develop into large, mobile folds. Such folds were indeed experimentally observed in graphene and other solid lubricants two-dimensional (2D) materials. Interestingly, in the soliton-fold regime, the shear stress decreases with the strain s, initially as s(-2/3) and rapidly going to zero. Such instability is consistent with the recently observed negative dynamic compressibility of 2D materials. We also predict that the curvatures of the soliton-folds are given by r(c) = δ√(ß/2α) where 1 ≤ δ ≤ 2 and ß and α are respectively related to the layer bending modulus and to the interlayer binding energy of the material. This finding might allow experimental estimates of the ß/α ratio of 2D materials from fold morphology.

17.
ACS Nano ; 7(8): 6597-604, 2013 Aug 27.
Article in English | MEDLINE | ID: mdl-23859671

ABSTRACT

We probe electron and hole mobilities in bilayer graphene under exposure to molecular oxygen. We find that the adsorbed oxygen reduces electron mobilities and increases hole mobilities in a reversible and activated process. Our experimental results indicate that hole mobilities increase due to the screening of long-range scatterers by oxygen molecules trapped between the graphene and the substrate. First principle calculations show that oxygen molecules induce resonant states close to the charge neutrality point. Electron coupling with such resonant states reduces the electron mobilities, causing a strong asymmetry between electron and hole transport. Our work demonstrates the importance of short-range scattering due to adsorbed species in the electronic transport in bilayer graphene on SiO2 substrates.

18.
Nanotechnology ; 24(3): 035708, 2013 Jan 25.
Article in English | MEDLINE | ID: mdl-23263158

ABSTRACT

We perform ab initio calculations for the strain-induced formation of non-hexagonal-ring defects in graphene, graphane (hydrogen-functionalized graphene) and graphenol (hydroxyl-functionalized graphene). We find that the simplest of such topological defects, the Stone-Wales defect, acts as a seed for strain-induced dissociation and multiplication of topological defects. Through the application of inhomogeneous deformations to graphene, graphane and graphenol with varying initial concentrations of pentagonal and heptagonal rings and small-sized voids, we obtain several novel stable structures that possess, at the same time, large concentrations of non-hexagonal rings (from fourfold to elevenfold) and small formation energies.

19.
Nano Lett ; 12(5): 2313-7, 2012 May 09.
Article in English | MEDLINE | ID: mdl-22468807

ABSTRACT

We report a novel mechanical response of few-layer graphene, h-BN, and MoS(2) to the simultaneous compression and shear by an atomic force microscope (AFM) tip. The response is characterized by the vertical expansion of these two-dimensional (2D) layered materials upon compression. Such effect is proportional to the applied load, leading to vertical strain values (opposite to the applied force) of up to 150%. The effect is null in the absence of shear, increases with tip velocity, and is anisotropic. It also has similar magnitudes in these solid lubricant materials (few-layer graphene, h-BN, and MoS(2)), but it is absent in single-layer graphene and in few-layer mica and Bi(2)Se(3). We propose a physical mechanism for the effect where the combined compressive and shear stresses from the tip induce dynamical wrinkling on the upper material layers, leading to the observed flake thickening. The new effect (and, therefore, the proposed wrinkling) is reversible in the three materials where it is observed.

20.
Small ; 8(2): 220-4, 2012 Jan 23.
Article in English | MEDLINE | ID: mdl-22109840

ABSTRACT

The electromechanical behavior of single-walled carbon nanotubes (SWNTs) in contact with different materials is investigated by scanning probe microscopy. An anomalous diamond/semiconducting nanotube behavior is observed, which is consistent with ab initio calculations: the formation of a broken-gap heterojunction between semiconducting SWNTs and a hydrogenated diamond surface results in a metallic response for such SWNTs.

SELECTION OF CITATIONS
SEARCH DETAIL
...