Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Colloid Interface Sci ; 629(Pt A): 445-454, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36087557

ABSTRACT

The controlled rupture of a core-shell capsule and the timely release of encapsulated materials are essential steps of the efficient design of such carriers. The mechanical and physico-chemical properties of their shells (or membranes) mainly govern the evolution of such systems under stress and notably the link between the dynamics of rupture and the mechanical properties. This issue is addressed considering weakly cohesive shells made by the interfacial complexation of Chitosan and PFacid in a planar extensional flow. Three regimes are observed, thanks to the two observational planes. Whatever the time of reaction in membrane assembly, there is no rupture in deformation as long as the hydrodynamic stress is below a critical value. At low times of complexation (weak shear elastic modulus), the rupture is reminiscent of the breakup of droplets: a dumbell or a waist. Fluorescent labelling of the membrane shows that this process is governed by continuous thinning of the membrane up to the destabilization. It is likely that the membrane shows a transition from a solid to liquid state. At longer times of complexation, the rupture has a feature of solid-like breakup (breakage) with a discontinuity of the membrane. The maximal internal constraint determined numerically marks the initial location of breakup as shown. The pattern becomes more complex as the elongation rate increases with several points of rupture. A phase diagram in the space parameters of the shear elastic modulus and the hydrodynamic stress is established.


Subject(s)
Chitosan , Capsules
2.
J Colloid Interface Sci ; 616: 911-920, 2022 Jun 15.
Article in English | MEDLINE | ID: mdl-35259721

ABSTRACT

Controlling the assembly of polyelectrolytes and surfactant at liquid-liquid interfaces offers new ways to fabricate soft materials with specific physical properties. However, little is known of the relationships between the kinetics of interfacial assembly, structural and rheological properties of such interfaces. We studied the kinetics at water-oil interface of the assembly of a positively charged biopolymer, chitosan, with an anionic fatty acid using a multi-scale approach. The growth kinetics of the membrane was followed by interfacial rheometry and space- and time- resolved dynamic light scattering. This set of techniques revealed that the interfacial complexation was a multi-step process. At short time-scale, the interface was fluid and made of heterogeneous patches. At a 'gelation' time, the surface elastic modulus and the correlation between speckles increased sharply meaning that the patches percolated. Confocal and electron microscopy confirmed this picture, and revealed that the basic brick of the membrane was sub-micrometric aggregates of chitosan/ fatty acid.


Subject(s)
Chitosan , Pulmonary Surfactants , Chitosan/chemistry , Excipients , Fatty Acids , Polyelectrolytes , Surface-Active Agents/chemistry
3.
PLoS Comput Biol ; 17(5): e1008934, 2021 05.
Article in English | MEDLINE | ID: mdl-33983926

ABSTRACT

The investigation of cell shapes mostly relies on the manual classification of 2D images, causing a subjective and time consuming evaluation based on a portion of the cell surface. We present a dual-stage neural network architecture for analyzing fine shape details from confocal microscopy recordings in 3D. The system, tested on red blood cells, uses training data from both healthy donors and patients with a congenital blood disease, namely hereditary spherocytosis. Characteristic shape features are revealed from the spherical harmonics spectrum of each cell and are automatically processed to create a reproducible and unbiased shape recognition and classification. The results show the relation between the particular genetic mutation causing the disease and the shape profile. With the obtained 3D phenotypes, we suggest our method for diagnostics and theragnostics of blood diseases. Besides the application employed in this study, our algorithms can be easily adapted for the 3D shape phenotyping of other cell types and extend their use to other applications, such as industrial automated 3D quality control.


Subject(s)
Erythrocytes/cytology , Microscopy, Confocal/methods , Neural Networks, Computer , Automation , Case-Control Studies , Erythrocytes/immunology , Humans , Image Processing, Computer-Assisted/methods , Reproducibility of Results
4.
Front Physiol ; 10: 514, 2019.
Article in English | MEDLINE | ID: mdl-31139090

ABSTRACT

Glutaraldehyde is a well-known substance used in biomedical research to fix cells. Since hemolytic anemias are often associated with red blood cell shape changes deviating from the biconcave disk shape, conservation of these shapes for imaging in general and 3D-imaging in particular, like confocal microscopy, scanning electron microscopy or scanning probe microscopy is a common desire. Along with the fixation comes an increase in the stiffness of the cells. In the context of red blood cells this increased rigidity is often used to mimic malaria infected red blood cells because they are also stiffer than healthy red blood cells. However, the use of glutaraldehyde is associated with numerous pitfalls: (i) while the increase in rigidity by an application of increasing concentrations of glutaraldehyde is an analog process, the fixation is a rather digital event (all or none); (ii) addition of glutaraldehyde massively changes osmolality in a concentration dependent manner and hence cell shapes can be distorted; (iii) glutaraldehyde batches differ in their properties especially in the ratio of monomers and polymers; (iv) handling pitfalls, like inducing shear artifacts of red blood cell shapes or cell density changes that needs to be considered, e.g., when working with cells in flow; (v) staining glutaraldehyde treated red blood cells need different approaches compared to living cells, for instance, because glutaraldehyde itself induces a strong fluorescence. Within this paper we provide documentation about the subtle use of glutaraldehyde on healthy and pathologic red blood cells and how to deal with or circumvent pitfalls.

SELECTION OF CITATIONS
SEARCH DETAIL
...