Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Adv Healthc Mater ; : e2302330, 2023 Sep 26.
Article in English | MEDLINE | ID: mdl-37755313

ABSTRACT

Understanding the communication of individual neurons necessitates precise control of neural activity. Photothermal modulation is a remote and non-genetic technique to control neural activity with high spatiotemporal resolution. The local heat release by photothermally active nanomaterial will change the membrane properties of the interfaced neurons during light illumination. Recently, it is demonstrated that the two-dimensional Ti3 C2 Tx MXene is an outstanding candidate to photothermally excite neurons with low incident energy. However, the safety of using Ti3 C2 Tx for neural modulation is unknown. Here, the biosafety of Ti3 C2 Tx -based photothermal modulation is thoroughly investigated, including assessments of plasma membrane integrity, mitochondrial stress, and oxidative stress. It is demonstrated that culturing neurons on 25 µg cm-2 Ti3 C2 Tx films and illuminating them with laser pulses (635 nm) with different incident energies (2-10 µJ per pulse) and different pulse frequencies (1 pulse, 1 Hz, and 10 Hz) neither damage the cell membrane, induce cellular stress, nor generate oxidative stress. The threshold energy to cause damage (i.e., 14 µJ per pulse) exceeded the incident energy for neural excitation (<10 µJ per pulse). This multi-assay safety evaluation provides crucial insights for guiding the establishment of light conditions and protocols in the clinical translation of photothermal modulation.

2.
ACS Sens ; 7(8): 2225-2234, 2022 Aug 26.
Article in English | MEDLINE | ID: mdl-35838305

ABSTRACT

It is highly important to implement various semiconducting, such as n- or p-type, or conducting types of sensing behaviors to maximize the selectivity of gas sensors. To achieve this, researchers so far have utilized the n-p (or p-n) two-phase transition using doping techniques, where the addition of an extra transition phase provides the potential to greatly increase the sensing performance. Here, we report for the first time on an n-p-conductor three-phase transition of gas sensing behavior using Mo2CTx MXene, where the presence of organic intercalants and film thickness play a critical role. We found that 5-nm-thick Mo2CTx films with a tetramethylammonium hydroxide (TMAOH) intercalant displayed a p-type gas sensing response, while the films without the intercalant displayed a clear n-type response. Additionally, Mo2CTx films with thicknesses over 700 nm exhibited a conductor-type response, unlike the thinner films. It is expected that the three-phase transition was possible due to the unique and simultaneous presence of the intrinsic metallic conductivity and the high-density of surface functional groups of the MXene. We demonstrate that the gas response of Mo2CTx films containing tetramethylammonium (TMA) ions toward volatile organic compounds (VOCs), NH3, and NO2 is ∼30 times higher than that of deintercalated films, further showing the influence of intercalants on sensing performance. Also, DFT calculations show that the adsorption energy of NH3 and NO2 on Mo2CTx shifts from -0.973, -1.838 eV to -1.305, -2.750 eV, respectively, after TMA adsorption, demonstrating the influence of TMA in enhancing sensing performance.

SELECTION OF CITATIONS
SEARCH DETAIL
...