Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
bioRxiv ; 2024 Sep 02.
Article in English | MEDLINE | ID: mdl-39282420

ABSTRACT

There has been limited research into arsenolipid toxicological risks and health-related outcomes due to challenges with their separation, identification, and quantification within complex biological matrices (e.g., fish, seaweed). Analytical approaches for arsenolipid identification such as suspect screening have not been well documented and there are no certified standard reference materials, leading to issues with reproducibility and uncertainty regarding the accuracy of results. In this study, a detailed workflow for the identification of arsenolipids utilizing suspect screening coupled with data independent analysis is presented and applied to three commercially available standard reference materials (Hijiki seaweed, dogfish liver, and tuna). Hexane and dichloromethane/methanol extraction, followed by reversed-phase high-performance liquid chromatography-inductively coupled plasma mass spectrometry and liquid chromatography-electrospray ionization-quadrupole time-of-flight mass spectrometry. Using the workflow developed, mass fragmentation matching, mass error calculations, and retention time matching were performed to identify suspect arsenolipids. Arseno-fatty acids (AsFAs), arsenohydrocarbons (AsHCs), and arsenosugar phospholipids (AsSugPLs) were identified with high confidence; AsHC332, AsHC360, and AsSugPL720 in seaweed, AsHC332 in tuna, and AsFA474 and AsFA502 in the dogfish liver. AsHC332, AsHC360, and AsFA502 were identified as promising candidates for further work on synthesis, quantification using MS/MS, and toxicity testing.

2.
ACS Appl Mater Interfaces ; 16(10): 13346-13351, 2024 Mar 13.
Article in English | MEDLINE | ID: mdl-38427334

ABSTRACT

The use of ionic liquids (ILs) as lubricants or additives has been studied extensively over the past few decades. However, the ILs considered for lubricant applications have been part of a limited structural class of phosphonium- or imidazolium-type compounds. Here, new pyrylium- and pyridinium-based ILs bearing long alkyl chains were prepared and evaluated as friction- and wear-reducing additives in naphthenic greases. The physical properties of the synthetic ILs and additized naphthenic grease were measured. The tribological performance of the greases was measured by using standard benchtop tests. The addition of ILs was detrimental to wear, causing an increase in the amount of material removed by sliding relative to the base greases in most cases. In contrast, the friction performance improved under nearly all conditions tested due to the IL additives. The compatibility of the synthetic ILs with the naphthenic greases and its potential influence upon miscibility and tribological performance are tentatively proposed to be a result of the molecular structure.

3.
Org Biomol Chem ; 22(12): 2389-2394, 2024 Mar 20.
Article in English | MEDLINE | ID: mdl-38329231

ABSTRACT

Easily accessible methods for direct C-H arylation of arenes have been explored in the presence of transition metal catalysts to facilitate C-C bond formation; however, the absence of transition-metal impurities is a significant concern in the preparation of active pharmaceutical ingredients (APIs). Herein, we examine the use of bis(imino)acenaphthene (BIAN) as a potential single-electron transfer initiator in transition metal-free C-C bond-forming reactions. Using this approach, arenes are coupled to several aryl and heteroaryl halides. Based upon preliminary mechanistic evidence and crystallographic probation of an active initiator species, we tentatively propose a potassium-stabilized 'metal-free' radical pathway is in operation.

SELECTION OF CITATIONS
SEARCH DETAIL