Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
PLoS One ; 12(8): e0182445, 2017.
Article in English | MEDLINE | ID: mdl-28792523

ABSTRACT

Canonical processing of miRNA begins in the nucleus with the Microprocessor complex, which is minimally composed of the RNase III enzyme Drosha and two copies of its cofactor protein DGCR8. In structural analogy to most RNase III enzymes, Drosha possesses a modular domain with the double-stranded RNA binding domain (dsRBD) fold. Unlike the dsRBDs found in most members of the RNase III family, the Drosha-dsRBD does not display double-stranded RNA binding activity; perhaps related to this, the Drosha-dsRBD amino acid sequence does not conform well to the canonical patterns expected for a dsRBD. In this article, we investigate the impact on miRNA processing of engineering double-stranded RNA binding activity into Drosha's non-canonical dsRBD. Our findings corroborate previous studies that have demonstrated the Drosha-dsRBD is necessary for miRNA processing and suggest that the amino acid composition in the second α-helix of the domain is critical to support its evolved function.


Subject(s)
Double-Stranded RNA Binding Motif/physiology , MicroRNAs/metabolism , RNA, Double-Stranded/metabolism , Ribonuclease III/metabolism , Amino Acid Sequence , Conserved Sequence , Double-Stranded RNA Binding Motif/genetics , Electrophoretic Mobility Shift Assay , Escherichia coli , Genetic Engineering , HEK293 Cells , Humans , Models, Molecular , Mutation , Nuclear Magnetic Resonance, Biomolecular , Protein Conformation, alpha-Helical/genetics , Protein Conformation, alpha-Helical/physiology , Ribonuclease III/genetics
2.
Methods Mol Biol ; 848: 21-40, 2012.
Article in English | MEDLINE | ID: mdl-22315061

ABSTRACT

Small ribozymes such as the hairpin, hammerhead, VS, glm S, and hepatitis delta virus (HDV) are self-cleaving RNAs that are typically characterized by kinetics and structural methods. Working with these RNAs requires attention to numerous experimental details. In this chapter we focus on four different experimental aspects of ribozyme studies: preparing the RNA, mapping its structure with reverse transcription and end-labeled techniques, solvent isotope experiments, and co-transcriptional cleavage assays. Although the focus of these methods is the HDV ribozyme, the methods should be applicable to other ribozymes.


Subject(s)
Hepatitis Delta Virus/genetics , RNA, Catalytic/chemistry , RNA, Catalytic/genetics , RNA, Viral/chemistry , RNA, Viral/genetics , Solvents/chemistry , Transcription, Genetic , Buffers , Cloning, Molecular , Deuterium Oxide/chemistry , Hepatitis Delta Virus/enzymology , Hydrogen-Ion Concentration , Isotopes , Kinetics , RNA, Catalytic/metabolism , RNA, Viral/metabolism , Reverse Transcription
3.
Biochemistry ; 49(31): 6508-18, 2010 Aug 10.
Article in English | MEDLINE | ID: mdl-20677830

ABSTRACT

The hepatitis delta virus (HDV) ribozyme and HDV-like ribozymes are self-cleaving RNAs found throughout all kingdoms of life. These RNAs fold into a double-nested pseudoknot structure and cleave RNA, yielding 2',3'-cyclic phosphate and 5'-hydroxyl termini. The active site nucleotide C75 has a pK(a) shifted >2 pH units toward neutrality and has been implicated as a general acid/base in the cleavage reaction. An active site Mg(2+) ion that helps activate the 2'-hydroxyl for nucleophilic attack has been characterized biochemically; however, this ion has not been visualized in any previous structures. To create a snapshot of the ribozyme in a state poised for catalysis, we have crystallized and determined the structure of the HDV ribozyme bound to an inhibitor RNA containing a deoxynucleotide at the cleavage site. This structure includes the wild-type C75 nucleotide and Mg(2+) ions, both of which are required for maximal ribozyme activity. This structure suggests that the position of C75 does not change during the cleavage reaction. A partially hydrated Mg(2+) ion is also found within the active site where it interacts with a newly resolved G.U reverse wobble. Although the inhibitor exhibits crystallographic disorder, we modeled the ribozyme-substrate complex using the conformation of the inhibitor strand observed in the hammerhead ribozyme. This model suggests that the pro-R(P) oxygen of the scissile phosphate and the 2'-hydroxyl nucleophile are inner-sphere ligands to the active site Mg(2+) ion. Thus, the HDV ribozyme may use a combination of metal ion Lewis acid and nucleobase general acid strategies to effect RNA cleavage.


Subject(s)
Hepatitis Delta Virus/enzymology , RNA, Catalytic/chemistry , Catalytic Domain , Crystallography, X-Ray , Hydrolysis , Magnesium , Organic Chemistry Phenomena , Organophosphates/metabolism , RNA, Catalytic/metabolism
4.
Biochemistry ; 49(25): 5321-30, 2010 Jun 29.
Article in English | MEDLINE | ID: mdl-20524672

ABSTRACT

Self-cleaving RNAs have recently been identified in mammalian genomes. A small ribozyme related in structure to the hepatitis delta virus (HDV) ribozyme occurs in a number of mammals, including chimpanzees and humans, within an intron of the CPEB3 gene. The catalytic mechanisms for the CPEB3 and HDV ribozymes appear to be similar, generating cleavage products with 5'-hydroxyl and 2',3'-cyclic phosphate termini; nonetheless, the cleavage rate reported for the CPEB3 ribozyme is more than 6000-fold slower than for the fastest HDV ribozyme. Herein, we use full-length RNA and cotranscriptional self-cleavage assays to compare reaction rates among human CPEB3, chimp CPEB3, and HDV ribozymes. Our data reveal that a single base change of the upstream flanking sequence, which sequesters an intrinsically weak P1.1 pairing in a misfold, increases the rate of the wild-type human CPEB3 ribozyme by approximately 250-fold; thus, the human ribozyme is intrinsically fast-reacting. Secondary structure determination and native gel analyses reveal that the cleaved population of the CPEB3 ribozyme has a single, secondary structure that closely resembles the HDV ribozyme. In contrast, the precleavage population of the CPEB3 ribozyme appears to have a more diverse secondary structure, possibly reflecting misfolding with the upstream sequence and dynamics intrinsic to the ribozyme. Prior identification of expressed sequence tags (ESTs) in human cells indicated that cleavage activity of the human ribozyme is tissue-specific. It is therefore possible that cellular factors interact with regions upstream of the CPEB3 ribozyme to unmask its high intrinsic reactivity.


Subject(s)
RNA-Binding Proteins/physiology , Animals , Base Sequence , Catalysis , Cloning, Molecular , Electrophoresis, Polyacrylamide Gel , Humans , Kinetics , Nucleic Acid Conformation , RNA/chemistry , RNA/genetics , RNA-Binding Proteins/chemistry , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism
5.
Methods ; 49(2): 101-11, 2009 Oct.
Article in English | MEDLINE | ID: mdl-19409996

ABSTRACT

Raman crystallography is the application of Raman spectroscopy to single crystals. This technique has been applied to a variety of protein molecules where it has provided unique information about biopolymer folding, substrate binding, and catalysis. Here, we describe the application of Raman crystallography to functional RNA molecules. RNA represents unique opportunities and challenges for Raman crystallography. One issue that confounds studies of RNA is its tendency to adopt multiple non-functional folds. Raman crystallography has the advantage that it isolates a single state of the RNA within the crystal and can evaluate its fold, metal ion binding properties (ligand identity, stoichiometry, and affinity), proton binding properties (identity, stoichiometry, and affinity), and catalytic potential. In particular, base-specific stretches can be identified and then associated with the binding of metal ions and protons. Because measurements are carried out in the hanging drop at ambient, rather than cryo, conditions and because RNA crystals tend to be approximately 70% solvent, RNA dynamics and conformational changes become experimentally accessible. This review focuses on experimental setup and procedures, acquisition and interpretation of Raman data, and determination of physicochemical properties of the RNA. Raman crystallographic and solution biochemical experiments on the HDV RNA enzyme are summarized and found to be in excellent agreement. Remarkably, characterization of the crystalline state has proven to help rather than hinder functional characterization of functional RNA, most likely because the tendency of RNA to fold heterogeneously is limited in a crystalline environment. Future applications of Raman crystallography to RNA are briefly discussed.


Subject(s)
Crystallography/methods , RNA/chemistry , Spectrum Analysis, Raman/methods , Catalysis , Ions , Ligands , Metals/chemistry , Nucleic Acid Conformation , RNA, Catalytic/chemistry , RNA, Viral/chemistry , Solvents/chemistry
6.
Methods Enzymol ; 468: 389-408, 2009.
Article in English | MEDLINE | ID: mdl-20946779

ABSTRACT

Gel electrophoresis is a ubiquitous separation technique in nucleic acid biochemistry. Denaturing gel electrophoresis separates nucleic acids on the basis of length, while native gel electrophoresis separates nucleic acids on the basis of both shape and length. Temperature gradient gel electrophoresis (TGGE), in which a temperature gradient is present across the gel, combines the advantages of denaturing and native gel electrophoresis by having native gel-like properties at low temperatures and denaturing gel-like properties at high temperatures. We describe here the techniques of perpendicular and parallel TGGE and some of their applications. Isolation of stable and unstable RNA and DNA sequences from combinatorial libraries is accomplished with TGGE-SELEX, while thermodynamic characterization of an RNA tertiary motif is performed by perpendicular TGGE-melts. Specific examples are chosen from the literature to illustrate the methods. TGGE provides a powerful biophysical approach for analyzing RNA and DNA that complements more traditional methodologies.


Subject(s)
DNA/chemistry , Electrophoresis/methods , RNA/chemistry , Nucleic Acid Conformation
7.
J Am Chem Soc ; 130(30): 9670-2, 2008 Jul 30.
Article in English | MEDLINE | ID: mdl-18593125

ABSTRACT

A Raman microscope and Raman difference spectroscopy are used to detect the vibrational signature of RNA-bound magnesium hydrate in crystals of hepatitis delta virus (HDV) ribozyme and to follow the effects of magnesium hydrate binding to the nonbridging phosphate oxygens in the phosphodiester backbone. There is a correlation between the Raman intensity of the innersphere magnesium hydrate signature peak, near 322 cm-1, and the intensity of the PO2- symmetric stretch, near 1100 cm-1, perturbed by magnesium binding, demonstrating direct observation of -PO2-...Mg2+(H2O)x innersphere complexes. The complexes may be pentahydrates (x = 5) and tetrahydrates (x = 4). The assignment of the Raman feature near 322 cm-1 to a magnesium hydrate species is confirmed by isotope shifts observed in D2O and H218O that are semiquantitatively reproduced by calculations. The standardized intensity changes in the 1100 cm-1 PO2- feature seen upon magnesium hydrate binding indicates that there are approximately 5 innersphere Mg2+...-O2P contacts per HDV molecule when the crystal is exposed to a solution containing 20 mM magnesium.


Subject(s)
Hepatitis Delta Virus/enzymology , Magnesium Hydroxide/chemistry , Organophosphates/chemistry , RNA, Catalytic/chemistry , Spectrum Analysis, Raman/methods , Crystallography, X-Ray , Hepatitis Delta Virus/genetics , Models, Molecular
8.
RNA ; 14(9): 1746-60, 2008 Sep.
Article in English | MEDLINE | ID: mdl-18658121

ABSTRACT

The hepatitis delta virus (HDV) ribozyme occurs in the genomic and antigenomic strands of the HDV RNA and within mammalian transcriptomes. Previous kinetic studies suggested that a wobble pair (G*U or A(+)*C) is preferred at the cleavage site; however, the reasons for this are unclear. We conducted sequence comparisons, which indicated that while G*U is the most prevalent combination at the cleavage site, G-C occurs to a significant extent in genomic HDV isolates, and G*U, G-C, and A-U pairs are present in mammalian ribozymes. We analyzed the folding of genomic HDV ribozymes by free energy minimization and found that variants with purine-pyrimidine combinations at the cleavage site are predicted to form native structures while pyrimidine-purine combinations misfold, consistent with earlier kinetic data and sequence comparisons. To test whether the cleavage site base pair contributes to catalysis, we characterized the pH and Mg(2+)-dependence of reaction kinetics of fast-folding genomic HDV ribozymes with cleavage site base pair purine-pyrimidine combinations: G*U, A-U, G-C, and A(+)*C. Rates for these native-folding ribozymes displayed highly similar pH and Mg(2+) concentration dependencies, with the exception of the A(+)*C ribozyme, which deviated at high pH. None of the four ribozymes underwent miscleavage. These observations support the A(+)*C ribozyme as being more active with a wobble pair at the cleavage site than with no base pair at all. Overall, the data support a model in which the cleavage site base pair provides a structural role in catalysis and does not need to be a wobble pair.


Subject(s)
Base Pairing , Hepatitis Delta Virus/enzymology , Hepatitis Delta Virus/genetics , RNA, Catalytic/metabolism , RNA, Viral/metabolism , Base Sequence , Catalysis , Genome, Viral , Hydrogen-Ion Concentration , Models, Molecular , Molecular Sequence Data , Nucleic Acid Conformation , RNA, Catalytic/chemistry , RNA, Catalytic/genetics , RNA, Viral/chemistry , RNA, Viral/genetics
9.
RNA ; 13(12): 2189-201, 2007 Dec.
Article in English | MEDLINE | ID: mdl-17956974

ABSTRACT

RNA viruses are responsible for a variety of human diseases, and the pathogenicity of RNA viruses is often attributed to a high rate of mutation. Self-cleavage activity of the wild-type hepatitis delta virus (HDV) ribozyme as measured in standard divalent ion renaturation assays is biphasic and mostly slow and can be improved by multiple rational changes to ribozyme sequence or by addition of chemical denaturants. This is unusual in the sense that wild type is the most catalytically active sequence for the majority of protein enzymes, and RNA viruses are highly mutable. To see whether the ribozyme takes advantage of fast-reacting sequence changes in vivo, we performed alignment of 76 genomic and 269 antigenomic HDV isolates. Paradoxically, the sequence for the ribozyme was found to be essentially invariant in nature. We therefore tested whether three ribozyme sequence changes that improve self-cleavage under standard divalent ion renaturation assays also improve self-cleavage during transcription. Remarkably, wild type was as fast, or faster, than these mutants under cotranscriptional conditions. Slowing the rate of transcription or adding the hepatitis delta antigen protein only further stimulated cotranscriptional self-cleavage activity. Thus, the relative activity of HDV ribozyme mutants depends critically on whether the reaction is assayed under in vivo-like conditions. A model is presented for how wild-type ribozyme sequence and flanking sequence work in concert to promote efficient self-cleavage during transcription. Wild type being the optimal ribozyme sequence under in vivo-like conditions parallels the behavior of most protein enzymes.


Subject(s)
Hepatitis Delta Virus/genetics , RNA, Catalytic/genetics , Transcription, Genetic , Base Sequence , Models, Molecular , Molecular Sequence Data , Mutation , Nucleic Acid Conformation , RNA, Catalytic/chemistry , RNA, Viral/chemistry , RNA, Viral/genetics , Structure-Activity Relationship
10.
J Am Chem Soc ; 129(43): 13335-42, 2007 Oct 31.
Article in English | MEDLINE | ID: mdl-17924627

ABSTRACT

The hepatitis delta virus (HDV) ribozyme uses a cytosine to facilitate general acid-base catalysis. Biochemical studies suggest that C75 has a pKa perturbed to near neutrality. To measure this pKa directly, Raman spectra were recorded on single ribozyme crystals using a Raman microscope. A spectral feature arising from a single neutral cytosine was identified at 1528 cm(-1). At low pH, this mode was replaced with a new spectral feature. Monitoring these features as a function of pH revealed pKa values for the cytosine that couple anticooperatively with Mg2+ binding, with values of 6.15 and 6.40 in the presence of 20 and 2 mM Mg2+, respectively. These pKa values agree well with those obtained from ribozyme activity experiments in solution. To correlate the observed pKa with a specific nucleotide, crystals of C75U, which is catalytically inactive, were examined. The Raman difference spectra show that this mutation does not affect the conformation of the ribozyme. However, crystals of C75U did not produce a signal from a protonatable cytosine, providing strong evidence that protonation of C75 is being monitored in the wild-type ribozyme. These studies provide the first direct physical measurement of a pKa near neutrality for a catalytic residue in a ribozyme and show that ribozymes, like their protein enzyme counterparts, can optimize the pKa of their side chains for proton transfer.


Subject(s)
Cytosine/chemistry , Genome, Viral/genetics , Hepatitis Delta Virus/enzymology , Hepatitis Delta Virus/genetics , RNA, Catalytic/chemistry , RNA, Catalytic/metabolism , Catalysis , Crystallography , Cytidine Monophosphate/chemistry , Hydrogen-Ion Concentration , Mutation/genetics , Nucleic Acid Conformation , Protons , Spectrum Analysis, Raman
11.
J Mol Biol ; 341(3): 695-712, 2004 Aug 13.
Article in English | MEDLINE | ID: mdl-15288780

ABSTRACT

The hepatitis delta virus (HDV) ribozyme is a self-cleaving RNA that resides in the HDV genome and regulates its replication. The native fold of the ribozyme is complex, having two pseudoknots. Earlier work implicated four non-native pairings in slowing pseudoknot formation: Alt 1, Alt 2, Alt 3, and Alt P1. The goal of the present work was design of a kinetically simplified and maximally reactive construct for in vitro mechanistic and structural studies. The initial approach chosen was site-directed mutagenesis in which known alternative pairings were destabilized while leaving the catalytic core intact. Based on prior studies, the G11C/U27Delta double mutant was prepared. However, biphasic kinetics and antisense oligonucleotide response trends opposite those of the well-studied G11C mutant were observed suggesting that new alternative pairings with multiple registers, termed Alt X and Alt Y, had been created. Enzymatic structure mapping of oligonucleotide models supported this notion. This led to a model wherein Alt 2 and the phylogenetically conserved Alt 3 act as "folding guides", facilitating folding of the major population of the RNA molecules by hindering formation of the Alt X and Alt Y registers. Attempts to eliminate the strongest of the Alt X pairings by rational design of a quadruple mutant only resulted in more complex kinetic behavior. In an effort to simultaneously destabilize multiple alternative pairings, studies were carried out on G11C/U27Delta in the presence of urea or increased monovalent ion concentration. Inclusion of physiological ionic strength allowed the goal of monophasic, fast-folding (kobs approximately 60 min(-1)) kinetics to be realized. To account for this, a model is developed wherein Na+, which destabilizes secondary and tertiary structures in the presence of Mg2+, facilitates native folding by destabilizing the multiple alternative secondary structures with a higher-order dependence.


Subject(s)
Hepatitis Delta Virus/chemistry , RNA, Catalytic/genetics , RNA/chemistry , Catalytic Domain , Hepatitis Delta Virus/genetics , Ions , Kinetics , Magnesium/chemistry , Magnetic Resonance Spectroscopy , Models, Chemical , Models, Statistical , Mutagenesis, Site-Directed , Mutation , Nucleic Acid Conformation , Oligonucleotides/chemistry , Oligonucleotides, Antisense/chemistry , Phylogeny , Protein Folding , RNA, Catalytic/chemistry , Sodium/chemistry , Thermodynamics , Time Factors , Urea/chemistry
12.
J Mol Biol ; 317(4): 559-75, 2002 Apr 05.
Article in English | MEDLINE | ID: mdl-11955009

ABSTRACT

Hepatitis delta virus (HDV) replicates by a double rolling-circle mechanism that requires self-cleavage by closely related genomic and antigenomic versions of a ribozyme. We have previously shown that the uncleaved genomic ribozyme is subject to a variety of alternative (Alt) pairings. Sequence upstream of the ribozyme can regulate self-cleavage activity by formation of an Alt 1 ribozyme-containing structure that severely inhibits self-cleavage, or a P(-1) self-structure that permits rapid self-cleavage. Here, we test three other alternative pairings: Alt P1, Alt 2, and Alt 3. Alt P1 and Alt 3 contain primarily ribozyme-ribozyme interactions, while Alt 2 involves ribozyme-flanking sequence interaction. A number of single and double mutant ribozymes were prepared to increase or decrease the stability of the alternative pairings, and rates of self-cleavage were determined. Results of these experiments were consistent with the existence of the proposed alternative pairings and their ability to inhibit the overall rate of native ribozyme folding. Local misfolds are treated as internal equilibrium constants in a binding polynomial that modulates the intrinsic rate of cleavage. This model of equilibrium effects of misfolds should be general and apply to other ribozymes. All of the alternative pairings sequester a pseudoknot-forming strand. Folding of ribozymes containing Alt P1 and Alt 2 was accelerated by urea as long as the native ribozyme fold was sufficiently stable, while folding of mutants in which both of these alternative pairings had been removed were not stimulated by urea. This behavior suggests that the pseudoknots form by capture of an unfolded or appropriately rearranged alternative pairing by its complementary native strand. Fast-folding mutants were prepared by either weakening alternative pairings or by strengthening native pairings. A kinetic model was developed that accommodates these features and explains the position of the rate-limiting step for the G11C mutant. Implications of these results for structural and dynamic studies of the uncleaved HDV ribozyme are discussed.


Subject(s)
Hepatitis Delta Virus/enzymology , Hepatitis Delta Virus/genetics , Nucleic Acid Conformation , RNA, Catalytic/chemistry , RNA, Catalytic/metabolism , Base Sequence , Computer Simulation , Kinetics , Mutation/genetics , Nucleic Acid Conformation/drug effects , Oligonucleotides, Antisense/genetics , Proviruses/enzymology , Proviruses/genetics , RNA, Catalytic/genetics , RNA, Viral/chemistry , RNA, Viral/genetics , RNA, Viral/metabolism , Urea/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...